Answer:
= 100u. Hence 10 g = 0.1 mole. Hope it's helpful to u
Answer:
Deep inside Earth, between the molten iron core and the thin crust at the surface, there is a solid body of rock called the mantle. When rock from the mantle melts, moves to the surface through the crust, and releases pent-up gases, volcanoes erupt.
Explanation: hot molten rock, ash, and gases escape from the volcano
My answer to the question is "Gas particles are acting like tiny,solid spheres".
The molar mass (atomic weight ) of sodium is 23.0 grams/mole and the molar mass of sodium azide, NaN3 , is the mass of sodium, 23.0 gram/mole added to the molar mass of three atoms of nitrogen (14.0 x 3 = 42 gram/mole) which equals 65.0 grams/mole. The percentage of sodium is 23.0 /65.0 x 100 % = 35 %
Since the half-reaction is occurring in a basic solution, add 32OH− to each side of the equation to eliminate the H+ ions.
P₄ +16H₂O + 32OH⁻ ⟶ 4PO₃⁻⁴ + 32H⁺ +32OH⁻
Final reaction :
P₄ + 32OH⁻ ⟶ 4PO₃⁻⁴ + 16H₂O + 20e⁻
A half reaction is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction.
The concept of half-reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half-reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode).
Half-reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction.
For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH- ions to balance the H+ ions in the half reactions (which would give H2O).
Learn more about Half reactions here : brainly.com/question/2491738
#SPJ4