The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
Answer:
<em>Answer: positive velocity & negative acceleration</em>
Explanation:
<u>Accelerated Motion</u>
Both the velocity and acceleration are vectors because they have magnitude and direction. When the motion is restricted to one dimension, i.e. left-right or up-down, the direction is marked with the sign according to some preset reference.
The locomotive is moving at a certain speed with a (so far) unknown sign but the acceleration has a negative sign. Since the locomotive comes to a complete stop it means the velocity and the acceleration are of opposite signs.
Thus the velocity is positive.
Answer: positive velocity & negative acceleration
Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
Answer:
False
Explanation:
Balanced forces result in a net force of 0N. This means no direction or acceleration change will be applied to the object. A torque may be applied, but with no other external forces, the object will not move.