Answer:

Explanation:
<em>Ferrous Sulphate</em>
<em> is generally found as Lime-Green Crystals. On heating, these crystals almost immediately turn white-yellow. They then, break down to produce an anhydrous mixture of Sulphur Trioxide </em>
<em>, Sulphur Dioxide </em>
<em> as well as Ferric Oxide </em>
<em>.</em>
<em>We can hence, frame a skeletal equation of this reaction and try to balance it.</em>
<em>Hence,</em>

<em>Now,</em>
<em>a)In order to balance it through the 'Hit &Trial Method', we'll follow a series of </em><em>steps</em><em>:</em>
<em>1. First, lets compare the number of Fe (Iron) atoms on the RHS and LHS. We find that, the no. of Fe Atoms on the RHS is twice the number of Fe Atoms on the LHS. We hence, add a co-effecient 2 beside </em>
.
<em>2. Now, Iron atoms, Sulphur Atoms and Oxygen atoms occur 2, 2, 8 respectively on both the sides:</em>
<em> Hence, As all the other elements as well as iron, balance, we've arrived upon our Balanced Equation :</em>
<em> </em>
<em>b) We know that, decomposition reactions are [generally] endothermic reactions in which Large Compounds </em><em>decompose </em><em>into smaller elements and compounds. Here, as Ferrous Sulphate </em><em>decomposes </em><em>into Sulphur Dioxide, Sulphur Trioxide and Ferric Oxide, the reaction that occurs here is </em><em>Decomposition Reaction.</em>
<span>the atomic mass of nitrogen is 14. There is 1 nitrogen atom in the molecule so the percentage of N is :
14/35 x100% = 40%</span>
I am assuming you are talking about Neon. The rate of diffusion is directly proportional to the molar mass of the gas. Since neon has a molar mass of 20.18 grams, the gas must have a lower molar mass and must be a gas at 273 Kelvin. There are several elements that fulfill this criteria: Hydrogen, Helium, Oxygen, Nitrogen, and Fluorine.
Answer:
44.7 kWh
Explanation:
Let's consider the reduction of Al₂O₃ to Al in the Bayer process.
6 e⁻ + 3 H₂O + Al₂O₃ → 2 Al + 6 OH⁻
We can establish the following relations:
- The molar mass of Al is 26.98 g/mol.
- 2 moles of Al are produced when 6 moles of e⁻ circulate.
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant).
- 1 V = 1 J/c
- 1 kWh = 3.6 × 10⁶ J
When the applied electromotive force is 5.00 V, the energy required to produce 3.00 kg (3.00 × 10³ g) of aluminum is:

Answer:
Fractional distillation and HP-LC
Explanation:
This is a technique useful for analytes with close boiling points. Any alcohol-ester azotopes can be further refined using high-performance liquid chromatography (HP-LC) column.