Answer:
0.0738 M
Explanation:
HNO3 +LiOH = LiNO3 + H2O
Number of moles HNO3 = number of moles LiOH
M(HNO3)*V(HNO3) = M(LiOH)*M(LiOH)
M(HNO3)*50.0mL = 0.100M*36.90 mL
M(HNO3) = 0.100*36.90/50.0 M = 0.0738 M
Answer:
A:UNDERSTANDING CONCEPTS PART A 13) Which of the following is an example of periodicity? A) eating breakfast
Answer:
0.681 atm
Explanation:
To solve this problem, we make use of the General gas equation.
Given:
P1 = 785 torr
V1 = 2L
T1 = 37= 37 + 273.15 = 310.15K
P2 = ?
V2 = 3.24L
T2 = 58 = 58+273.15 = 331.15K
P1V1/T1 = P2V2/T2
Now, making P2 the subject of the formula,
P2 = P1V1T2/T1V2
P2 = [785 * 2 * 331.15]/[310.15 * 3.24]
P2 = 515.715 Torr
We convert this to atm: 1 torr = 0.00132 atm
515.715 Torr = 515.715 * 0.00132 = 0.681 atm
Answer:
sulfur
Explanation:
sulfur has 4p electrons.
phosphorus has 3p electrons.
The question is asking which one has 4
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>