Explanation:
If a large photon strikes the surface, that has enough strength to take out an electrode, which will then travel to the positive side since it is negative. Current is flowing at this stage. Since the reduced photons will be unable to distinguish between atoms, no power can pass.
The number of C2H5OH in a 3 m solution that contain 4.00kg H2O is calculate as below
M = moles of the solute/Kg of water
that is 3M = moles of solute/ 4 Kg
multiply both side by 4
moles of the solute is therefore = 12 moles
by use of Avogadro law constant
1 mole =6.02 x10^23 molecules
what about 12 moles
=12 moles/1 moles x 6.02 x10^23 = 7.224 x10^24 molecules
<u>Answer 2 :</u> The given electronic configuration for a neutral atom of phosphorous in its ground state is incorrect.
Explanation :
A neutral atom of phosphorous has 15 electrons.
The given electronic configuration is incorrect.
The reason is, According to Aufbau principle, the electrons will be first filled in the sub-shell having lower orbital energy. As from the given configuration, 3p sub-shell has lower orbital energy than 4s sub-shell. So, the electrons will be filled in 3p sub-shell first. Hence, the ground state electronic configuration of neutral atom of phosphorous is,

<u>Answer 3 :</u>
Element Rubidium Magnesium Aluminium
Symbol Rb Mg Al
Group number 1 2 13
Number of valence 1 2 3
electrons
The order of general reactivity on the basis of number of valence electrons.
Rb > Mg > Al
Reason : The reactivity is determined by the number of electrons present in the outermost shell that means the element which have 1 valence electron will be more reactive because they can easily lose electrons.
The melting point would decrease