The temperature scale which starts at absolute zero is the Kelvin scale. The correct option in respect to the given question is the last option. William Thompson was the British scientist and inventor that invented the Kelvin scale. William Thompson was also popularly known as Lord Kelvin.His discovery of the Kelvin scale is considered one among the three best scales in use for measuring temperatures.Each measuring unit of this scale is never called a degree but a Kelvin. This specialized scale gives the option of measuring temperature in both centigrade and Fahrenheit.
Answer:
Explanation:
a ) Between r = 0 and r = r₁
Electric field will be zero . It is so because no charge lies in between r = 0 and r = r₁ .
b ) From r = r₁ to r = r₂
At distance r , charge contained in the sphere of radius r
volume charge density x 4/3 π r³
q = Q x r³ / R³
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q x r³ / ε₀R³
E= Q x r / (4πε₀R³)
E ∝ r .
c )
Outside of r = r₂
charge contained in the sphere of radius r = Q
Applying Gauss's law
4πr² E = q / ε₀
4πr² E = Q / ε₀
E = Q / 4πε₀r²
E ∝ 1 / r² .
Answer:
Charge on each metal sphere will be 
Explanation:
We have given number of electron added to metal sphere A 
As both the spheres are connected by rod so half -half electron will be distributed on both the spheres.
So electron on both the spheres 
We know that charge on each electron 
So charge on both the spheres will be equal to 
So charge on each metal sphere will be equal to 
Answer:
The helicopter was 1103.63 meters high when the package was dropped.
Explanation:
We consider positive speed as a downward movement
y: height (m)
t: time (s)
v₀: initial speed (m/s)
Δy = v₀t +
gt²
Δy= 15
×15 s +
×9.81
×(15 s)²
Δy= 1103.63 m
Answer:
The correct option is;
A. The potential energy between both like charges and like poles increases as they move closer together
Explanation:
Here we have that when we move the like poles of two bar magnets close to each other, there is an increased resistance in the continuing motion, therefore for each extra gap closer achieved, there is an increase in potential energy
Similarly, when two like charges are brought closer together, the potential energy, or the energy available to push the two like charges apart increases charge as the as the charges are brought closer together
Therefore, the correct option is the potential energy between both like charges and like poles increases as they move closer together.