Answer: current I = 0.5 A
Explanation:
Given that the
Potential difference V = 10V
Resistance R = 20 ohms
According to ohms law
V = IR
Where
V = potential difference
I = current
R = resistance
Make I the subject of formula
I = V/R
I = 10/20
I = 0.5 Ampere
Answer:
r = 2.031 x 10⁶ m = 2031 km
Explanation:
In order for the asteroid to orbit the planet, the centripetal force must be equal to the gravitational force between asteroid and planet:
Centripetal Force = Gravitational Force
mv²/r = GmM/r²
v² = GM/r
r = GM/v²
where,
r = radial distance = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Planet = 3.52 x 10¹³ kg
v = tangential speed = 0.034 m/s
Therefore,
r = (6.67 x 10⁻¹¹ N.m²/kg²)(3.52 x 10¹³ kg)/(0.034 m/s)²
<u>r = 2.031 x 10⁶ m = 2031 km</u>
The reaction of radiodecay of carbon C-14 is
C-14 --> N-14 + e- + (ve)
where e- is an electron and (ve) is an electron-type antineutrino.
Basically, when the carbon nucleus (atomic number: 6, mass number: 14) decays, a neutron of the nucleus converts into a proton (therefore, the mass number remains the same, 14, but the atomic number increases by 1, therefore it becomes nitrogen) and releases an electron-antineutrino pair.
So, the correct answer is C), N-14.