Answer: 40
Explanation:
I believe this is correct. I did 60/1.5 to get 40/mph
<span>The correct answer is blue. If you look at a luminosity star chart, called the Hertzsprung Russell Diagram, you will see the measurement of luminosity on the left side, and you will see a curve of stars with different colors (which correlate to the colors of the stars). Look for 30 on the luminosity measurement (look between 1 and 100). Then, move horizontally across the diagram until you hit the stars, whose color will be blue. Thus, blue is the answer.</span>
Answer:
The change in kinetic energy (KE) of the car is more in the second case.
Explanation:
Let the mass of the car = m
initial velocity of the first case, u = 22 km/h = 6.11 m/s
final velocity of the first case, v = 32 km/h = 8.89 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(8.89² - 6.11²)
= 20.85m J
initial velocity of the second case, u = 32 km/h = 8.89 m/s
final velocity of the second case, v = 42 km/h = 11.67 m/s
change in kinetic energy (K.E) = ¹/₂m(v² - u²)
ΔK.E = ¹/₂m(11.67² - 8.89²)
= 28.58m J
The change in kinetic energy (KE) of the car is more in the second case.
Answer:
a
The hiker (you ) is 200 m below his/her(your) starting point
b
The resultant displacement in the north east direction is

The resultant displacement in vertical direction (i.e the altitude change )

Explanation:
From the question we are told that
The displacement in the morning is 
The displacement in the afternoon is 
Generally the direction west is negative , the direction east is positive
the direction south is negative , the direction north is positive
resultant displacement is mathematically evaluated as



From the above calculation we see that at the end of the hiking the hiker (you) is 200 m below his/her(your) initial position
Generally from Pythagoras theorem , the resultant displacement in the north east direction is

=> 
Generally from Pythagoras theorem , the resultant displacement in vertical direction (i.e the altitude change )

=> 
Answer:
33.61°
Explanation:
Refractive index is equal to velocity of the light 'c' in empty space divided by the velocity 'v' in the substance.
Or ,
n = c/v.
v is the velocity in the medium (2.3 × 10⁸ m/s)
c is the speed of light in air = 3.0 × 10⁸ m/s
So,
n = 3.0 × 10⁸ / 2.3 × 10⁸
n = 1.31
Using Snell's law as:
Where,
is the angle of incidence ( 25.0° )
is the angle of refraction ( ? )
is the refractive index of the refraction medium (air, n=1)
is the refractive index of the incidence medium (glass, n=1.31)
Hence,
Angle of refraction =
= 33.61°