Answer:
6 meters away
Explanation:
6*1.4= 8.4 which is pretty close
Answer:
Yes it is possible
Explanation:
When two equal magnitude forces are acting on the rod in opposite direction
Then the net force on the system is always zero in that case
so we will have

now for the system net torque due to these forces is given by

here we know that
= distance of the forces from reference about which torque is measured
so here we can say that net force is zero on the system while torque is not zero
in all such case object will rotate about a fixed position with change angular speed
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
Answer:
The rate of change of distance is defined as speed.
Explanation:
The speed is defined as the rate of change of distance.
Speed = distance/ time
When we know the distance and the time, we get the value of speed. So, e know that who is moving fast or slow.
hen a graph is pltted beteen the distance and time, the slope of the graph gives the value of speed. So, by checking the slopes, hoseslope ismore, the speed is more and thusit is moving faster.
So, i agree with the statement.