1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
3 years ago
8

How can we get Equation B from Equation A? A. 5 = -2 (x - 1) B. 5 = -2x + 2 How can we get Equation B from Equation A?

Mathematics
1 answer:
lesya [120]3 years ago
7 0

Answer:

Please check the explanation.

Step-by-step explanation:

<u>Determining equation B from Equation A</u>

Given the equation A

5\:=\:-2\:\left(x\:-\:1\right)

Apply distributive law a\left(b-c\right)=ab-ac

5= -2x+2    which is equation B

Hence, equation B can be obtained by implementing the distributive law operation on equation A.

<u>Determining equation A from Equation B</u>

Given the equation B

5 = -2x + 2

Factor out common term -2 on the right-hand side of the equation

5=-2\left(x-1\right)  which is the equation A

Hence, equation A can be obtained by factoring out the common term -2 on the right-hand side of equation B.

You might be interested in
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
Determine which of the following function have a positive rate of change. Explain your answer.
olga2289 [7]

Answer:

  y = 2x - 11

Step-by-step explanation:

The "rate of change" is the coefficient of x when the function is written in this form:

  y = mx + b

That coefficient will be positive when the function has a positive rate of change.

  y = 2x - 11 . . . has a positive rate of change

3 0
3 years ago
What is the equation of the line in the graph
earnstyle [38]

b = - 4

slope m = (0 + 4)/(4 - 0) = 4/4 = 1

equation

y = x - 4

7 0
3 years ago
HELP! "translate: the product of 8 and a number increased by 2 use x as the variable"
Bumek [7]

Answer:

variable is (<em> </em><em>x</em><em> </em><em>)</em>

<em>∆</em><em>product</em><em> </em><em>of</em><em> </em><em>8</em><em> </em><em>:</em>

<em>8</em><em> </em><em>x</em>

<em>∆</em><em>the</em><em> </em><em>number</em><em> </em><em>increase</em><em>d</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>:</em><em> </em>

<em>8</em><em> </em><em>x</em><em> </em><em>+</em><em> </em><em>2</em>

<em>And</em><em> </em><em>we</em><em>'re</em><em> </em><em>done</em><em> </em><em>♥️</em>

3 0
3 years ago
Read 2 more answers
In the equation above c is a constantly . if n =5 , what is the value of c ?
Vaselesa [24]

Answer:

D

Step-by-step explanation:

5 - Sqrt 11 + 5 = 1

5 - Sqrt 16 = 1

5 - 4 = 1

8 0
3 years ago
Read 2 more answers
Other questions:
  • Evaluate the function rule for the given value
    15·2 answers
  • a hiker in africa discovers a skull that contains 51% of its original amount of C-14. Find the of the scull to the nearest year
    6·2 answers
  • 1 - 4 + (x + 6 * 1) when 'x' equals 25
    5·1 answer
  • 104/360 simplfy this fraction
    13·2 answers
  • If ON is a midsegment of KLM, find LM.<br><br> A.2<br> B.3<br> C.4<br> D.5
    11·2 answers
  • L thought that maybe it was *C* but I just want to be sure of my answer
    13·1 answer
  • Use the drag-and-drop tiles to determine whether the number is rational or not rational ​
    14·2 answers
  • Find the volume of a cylinder. Round your answer to the nearest tenth. Do not add a comma.
    10·1 answer
  • 11 15 24 33 10 35 23 25 40. What is P45 of the given data?
    10·1 answer
  • What is the slope of the line shown in the graph?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!