Answer:
y = -1/10x^2 +2.5
Step-by-step explanation:
The distance from focus to directrix is twice the distance from focus to vertex. The focus-directrix distance is the difference in y-values:
-1 -4 = -5
So, the distance from focus to vertex is p = -5/2 = -2.5. This places the focus 2.5 units below the vertex. Then the vertex is at (h, k) = (0, -1) +(0, 2.5) = (0, 1.5).
The scale factor of the parabola is 1/(4p) = 1/(4(-2.5)) = -1/10. Then the equation of the parabola is ...
y = (1/(4p))(x -h) +k
y = -1/10x^2 +2.5
_____
You can check the graph by making sure the focus and directrix are the same distance from the parabola everywhere. Of course, if the vertex is halfway between focus and directrix, the distances are the same there. Another point that is usually easy to check is the point on the parabola that is even with the focus. It should be as far from the focus as it is from the directrix. In this parabola, the focus is 5 units from the directrix, and we see the points on the parabola at y=-1 are 5 units from the focus.
(A) We let y = the cost and are told x = the number of people. Since you pay $20 per person, the cost is 20x. That is, y=20x
(B) Again, let the cost =y and the number of people is given as x. You pay $10 per person or 10x plus an additional $50 for the room. That is, y=10x+50
(c) Link to graphs: https://www.desmos.com/calculator but if that doesn't work see the attachment for a screen shot. You just have to put the equations (type them) at left and the graph comes automatically.
(D) The admission price is the same when the two equations are equal. You can find this by setting them equal to each other as such: 20x = 10x+50 and solving for x. However, since you just graphed them the point of intersection (where the lines share/have the same point) gives the information. Remembers that (x,y) = (people, cost). The graphs intersect at (5, 100) so for 5 people the cost is the same and the cost is $100.
(E) For the regular rate we let x = 6 and solve for y (the cost). We get y = 20x which is y = (20)(6)=120. It costs $120 using the regular rate to take 6 people. Now let's use the equation for the group rate again with x = 6. Here we get y = 10x +50 or y = 10(6)+50 = $110. The group rate costs $110.
(F) The cost is the same at 5 people but if there are more than five the group rate is better as we saw in part E. So the regular rate is better for less than 5 people.
(G) Here y = $150. Let us use the group rate formula and solve for x (the number of people). 10x+50 = 150 so 10x = 100 and x = 10. Since 10 is more than 5 this is the better deal. However if you don't believe it or want to double check we can solve for x using y = 150 and the regular rate equation. We get: 20x = 150 so x = 7.5 Since we can't bring half a person we would only be able to bring 7 and that is less than 10 so this is not the best choice. Use the group rate and bring 10 people!
Okay, so here, we know that -10 is the slope, therefore, it is also the constant of proportionality.
'x' is the unknown value, that tells us to multiply by -10.
So, on a graph, we would consider that per unit, it would decrease by -10, since its a negative slope.
Hope I helped, if you have further questions or concerns, feel free to PM me. Thanks! :D
Answer:
Step-by-step explanation:
Hello!
You need to construct a 95% CI for the population mean of the length of engineering conferences.
The variable has a normal distribution.
The information given is:
n= 84
x[bar]= 3.94
δ= 1.28
The formula for the Confidence interval is:
x[bar]±
*(δ/n)
Lower bound(Lb): 3.698
Upper bound(Ub): 4.182
Error bound: (Ub - Lb)/2 = (4.182-3.698)/2 = 0.242
I hope it helps!
Answer: m = 5/8
Step-by-step explanation: