Well, you don't need enzymes (biological catalysts) if you're willing to wait a century or two to digest a burger.
Without catalysts, complex reactions like digestion would take too long and the organism could not extract energy from the nutrients it eats in a practical time frame.
In addition, speed is everything in the biological world.
Some reactions and their speed relative to other organisms reactions determines who survives and who doesn't, among other aspects of life.
If a plant is slow to photosynthesize and grow in a habitat high in competition for sunlight real estate, other autotrophs will surely take over.
Answer:
So the answer would be 10 moles
Explanation:
1) Start with the molecular formula for water: 
2) If there are 10 moles of water use a mole ratio to calculate the moles of oxygen it would produce.
(This question is... interesting... since they chose an element that is diatomic in free state so It could TECHNICALLY be two answers, moles of O or moles of
)
The mole ratio is 1 moles of
to 1 moles of O. This is because the coefficient for oxygen in water is simple 1, so the ratio is 1:1.
3) that means if 10 moles of water decompose, they decompose into 10 moles of
and 10 moles of O.
Extra:
About what I was saying before about the question being slightly interesting:
10 moles of pure oxygen is produced but free state oxygen exists as
so it could possibly be 10 OR 5! However, notice it says elements. This leads me to believe the answer is 10 (monatomic oxygen) instead of 5 (free state/diatomic oxygen).
I hope this helps!
D.) It depends cuz no yeild is 100%..I mean side reactions also occur in most of the reactions. So mass of the reactant is not equal to the mass of the product. Hope it helps
Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right