<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>
First off, you need to know the weight of the projectile, lift and drag coefficients something like a high Reynolds number is preferred, then use the gravitational constant of 9.8 meters per second squared those would be a good start to get closer to your goal
The correct answer to the question is : Electric energy
EXPLANATION :
As per the question, we have an electric generator.
Before coming into any conclusion, first we have to understand the function of generator.
The generator is attached to the turbine. When the turbine rotates, the generator also starts rotating with it. Thanks to electromagnetic induction, the electricity is produced in the coil attached to the generator when it rotates.
Hence, from above, it is obvious that kinetic energy is converted into electric energy.
Answer:
Pascal's principle, also called Pascal's law, in fluid (gas or liquid) mechanics, statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container