The answer is 300 feet. The stop lamp or lamps on the rear of a vehicle must show a red light that is set in motion upon application of the service or foot brake and, in a vehicle manufactured or assembled on or after January 1, 1964, must be visible from a distance of not less than 300 feet to the rear in normal sunlight. Take note, if the vehicle is manufactured or assembled January 1, 1964, the stop lamp or lamps must be visible from a distance of not less than 100 feet. Also, the stop lamp may be combined with one or more other rear lamps.
Answer:
It is possible by increasing the speed of the tennis ball by a factor of (Mass of the tennis ball)/(Mass of the basketball)
Explanation:
The momentum of a body = The bod's mass × The body's velocity
Therefore, the momentum of a given mass of an object, such as a tennis ball can be increased by increasing the velocity or speed of the object. Whereby the speed of the ball, v₁, is increased such that the momentum of the basketball and the tennis ball will be the same, is given by the following equation
Mass of the basketball × v₂ = Mass of the tennis ball × v₁
Therefore, v₁/v₂ = (Mass of the tennis ball)/(Mass of the basketball)
Answer:
The photoelectric effect occurs only for frequencies above the cutoff frequency, regardless of the intensity.
Explanation:
The photoelectric effect occurs when light is shined on metals such as zinc beyond a certain frequency (the threshold frequency), which causes electrons to escape from the zinc. The electrons which are fleeing are called photo electrons.
Therefore photo electric effect is
The photoelectric effect occurs only for frequencies above the cutoff frequency, regardless of the intensity.
Well you have to minus the 4.5 to 5.2 and the answer to that would be -11.5 and calculated that to be 4.5
<span>inclined plane formula is length/hight
so 5/2= 2.5
and work= f x d so
work= 5 x 104 x 10= 5200 W
</span>