Bonds formed between atoms can be classified as ionic and covalent
Ionic bonds are formed between atoms that have a high difference in the electronegativity values.
In contrast, bonds formed between atoms that have a difference in electronegativity lower than the ionic counterparts are polar covalent bonds. If the atoms have very similar electronegativities, they form non-polar covalent bonds.
In H2S, the S atom is bonded to 2 H atoms. The electronegativity of H = 2.2 and S= 2.56. Since the difference is not high the bond formed will be covalent (polar covalent).
Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step 3.
Answer:
1.03 M
Explanation:
Step 1: Write the balanced equation
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
30.0 mL (0.0300 L) of 0.500 M HCl react.
0.0300 L × 0.500 mol/L = 0.0150 mol
Step 3: Calculate the moles of NaOH that react with 0.0150 moles of HCl
The molar ratio of NaOH to HCl is 1:1. The moles of NaOH that react are 1/1 × 0.0150 mol = 0.0150 mol.
Step 4: Calculate the molar concentration of NaOH
0.0150 moles of NaOH are in 14.5 mL (0.0145 L).
M = 0.0150 mol/0.0145 L = 1.03 M
Because it puts all known elements in order, both by atomic number and characteristics