Answer:
460 g
Explanation:
Heat lost by the warm water = heat gained by the cold water
-mCΔT = mCΔT
-m (4.184 J/g/K) (37°C − 85°C) = (1000 g) (4.184 J/g/K) (37°C − 15°C)
-m (37°C − 85°C) = (1000 g) (37°C − 15°C)
-m (-48°C) = (1000 g) (22°C)
m = 458 g
Rounded to two significant figures, you need a mass of 460 g of water.
Kinetic energy is calculated as such:
| therefore, 
<span>
as we know that the velocity vectors are at right angles
magnitude = ?
hypotenuse of a right
triangle.
v^2 = 90^2 + 4^2
v^2 = 8116
Taking the square root of both sides here we get,
v = 90.1 m/s
hope it helps
</span>
Answer:
ε = 6.617 V
Explanation:
We are given;
Number of turns; N = 40 turns
Diameter;D = 18cm = 0.18m
magnetic field; B = 0.65 T
Time;t = 0.1 s
The formula for the induced electric field(E.M.F) is given by;
ε = |-NAB/t|
A is area
ε is induced electric field
While N,B and t remain as earlier described.
Area = π(d²/4) = π(0.18²/4) = 0.02545
Thus;
ε = |-40 × 0.02545 × 0.65/0.1|
ε = 6.617 V
(we ignore the negative sign because we have to take the absolute value)
Answer:
∆h = 0.071 m
Explanation:
I rename angle (θ) = angle(α)
First we are going to write two important equations to solve this problem :
Vy(t) and y(t)
We start by decomposing the speed in the direction ''y''


Vy in this problem will follow this equation =

where g is the gravity acceleration

This is equation (1)
For Y(t) :

We suppose yi = 0

This is equation (2)
We need the time in which Vy = 0 m/s so we use (1)

So in t = 0.675 s → Vy = 0. Now we calculate the y in which this happen using (2)

2.236 m is the maximum height from the shell (in which Vy=0 m/s)
Let's calculate now the height for t = 0.555 s

The height asked is
∆h = 2.236 m - 2.165 m = 0.071 m