Answer:
Wavelength, 
Explanation:
Given that,
Number of cycles in a spiral spring is 2.91 in every 3.67 s
The velocity of the pulse in the spring is 0.925 cm/s, v = 0.00925 m/s
To find,
Wavelength
Solution,
Number of cycles per unit time is called frequency of a wave. The frequency of the longitudinal pulse is,

The wavelength of a wave is given by :



So, the wavelength of the longitudinal pulse is 0.011 meters. Hence, this is the required solution.
Use round wheels to roll the heap, help the weight by evacuating appended or contained protests, or place a smoother surface betwen the question and the floor. Water or different liquids can be utilized to diminish the protection, yet just on the off chance that they stay between the question and the floor.
Answer:
200 N
Explanation:
Given that,
A ball traveling at 15 m/s hits a bat with a force of 200 N.
We need to find the force that the bat moving at 20 m/s hit the ball with.
We know that, this probelm is based on Newton's third law of motion. The force that the ball exerting on bat should be equal to the force that the bat exerting in the ball but in opposite direction.
It would mean that the ball hits the ball with a force of 200 N. Hence, the correct option is (a).
Answer:
c)the gravitational forces of people is so small it is overshadowed by that of earth.
Explanation:
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the distance between the two objects
From the formula, we see that the gravitational force depends on the masses of the objects: since the mass of the Earth (
is much much larger than the average mass of one person (80-100 kg), then the gravitational force exerted by the Earth on a person is also much much larger than the gravitational force between two people.
Answer:
C. Takes heat in, does work, and loses energy heat.
Explanation:
Heat engine is a system makes use of thermal energy (heat) to in order to do mechanical work.
This occurs by converting the heat into mechanical energy. This energy is then used to do work.
The key characteristic of a heat engine is that the substance with which work is done by, goes from a higher temperature to a lower temperature.
Hence, it loses heat as it does work.