Answer:
15 m/s
Explanation:
Using the law of conservation of energy, potential energy equals kinetic energy hence

Therefore

where g is the acceleration due to gravity, m is the mass of the object, h is the height and v is the speed of the wallet
Taking g as 9.81 then

<span>they are travelling at right angles to each other.
At any given instant they form a right triangle with their starting point
</span>South bound <span>= x [mi/h]
</span> East bound <span> = x+1 [mi/h]
after five hours they will be
d=5x
and
d=5(x+1)
miles away from the starting point
(5x)^2+(5(x+1))^2=625
25x^2+(5x+5)^2=625
25x^2+25x^2+50x+25=625
50</span>x^2+50x-600=0
<span> x^2+ x - 12=0
(x+4)(x-3)=0
take the postive value
x= 3 mph the speed of south bound
4mph east bound </span>
<span>A spring is water coming from under the ground to the surface of the earth and a stream is water that is running along the ground through a trench like place on earth down a hill or steep a area.</span>
Answer:
Explanation:
1. We can find the temperature of each star using the Wien's Law. This law is given by:
(1)
So, the temperature of the first and the second star will be:


Now the relation between the absolute luminosity and apparent brightness is given:
(2)
Where:
- L is the absolute luminosity
- l is the apparent brightness
- r is the distance from us in light years
Now, we know that two stars have the same apparent brightness, in other words l₁ = l₂
If we use the equation (2) we have:

So the relative distance between both stars will be:
(3)
The Boltzmann Law says,
(4)
- σ is the Boltzmann constant
- A is the area
- T is the temperature
- L is the absolute luminosity
Let's put (4) in (3) for each star.

As we know both stars have the same size we can canceled out the areas.


I hope it helps!
Answer:

Explanation:
The situation can be described by the Principle of Energy Conservation and the Work-Energy Theorem:

The work done on the ball due to drag is:


![W_{drag} = (0.599\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2.18\,m-3.10\,m)+\frac{1}{2}\cdot (0.599\,kg)\cdot [(7.05\,\frac{m}{s} )^{2}-(4.19\,\frac{m}{s} )^{2}]](https://tex.z-dn.net/?f=W_%7Bdrag%7D%20%3D%20%280.599%5C%2Ckg%29%5Ccdot%20%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%282.18%5C%2Cm-3.10%5C%2Cm%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%280.599%5C%2Ckg%29%5Ccdot%20%5B%287.05%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%284.19%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5D)
