Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
F=m*a
F=65 kg *9.8 m/s^2
F=637 N (Newtons) — this is the weight
Answer:
a).
kJ/kg
b).
kJ/kg-K
Explanation:
a). The energy rate balance equation in the control volume is given by
![\dot{Q} - \dot{W}+m(h_{1}-h_{2})=0](https://tex.z-dn.net/?f=%5Cdot%7BQ%7D%20-%20%5Cdot%7BW%7D%2Bm%28h_%7B1%7D-h_%7B2%7D%29%3D0)
![\frac{\dot{Q}}{m} = \frac{\dot{W}}{m}+m(h_{1}-h_{2})](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7BQ%7D%7D%7Bm%7D%20%3D%20%5Cfrac%7B%5Cdot%7BW%7D%7D%7Bm%7D%2Bm%28h_%7B1%7D-h_%7B2%7D%29)
![\frac{\dot{W}}{m}= \frac{\dot{Q}}{m}+c_{p}(T_{1}-T_{2})](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7BW%7D%7D%7Bm%7D%3D%20%5Cfrac%7B%5Cdot%7BQ%7D%7D%7Bm%7D%2Bc_%7Bp%7D%28T_%7B1%7D-T_%7B2%7D%29)
![\frac{\dot{W}}{m}= -30+1.1(980-670)](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7BW%7D%7D%7Bm%7D%3D%20-30%2B1.1%28980-670%29)
kJ/kg
b). Entropy produced from the entropy balance equation in a control volume is given by
![\frac{\dot{Q}}{T_{boundary}}+\dot{m}(s_{1}-s_{2})+\dot{\sigma _{gen}}=0](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7BQ%7D%7D%7BT_%7Bboundary%7D%7D%2B%5Cdot%7Bm%7D%28s_%7B1%7D-s_%7B2%7D%29%2B%5Cdot%7B%5Csigma%20_%7Bgen%7D%7D%3D0)
![\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+(s_{2}-s_{1})](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7B%5Csigma%20_%7Bgen%7D%7D%7D%7Bm%7D%3D%5Cfrac%7B-%5Cfrac%7B%5Cdot%7BQ%7D%7D%7Bm%7D%7D%7BT_%7Bboundary%7D%7D%2B%28s_%7B2%7D-s_%7B1%7D%29)
![\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+c_{p}ln\frac{T_{2}}{T_{1}}-R.ln\frac{p_{2}}{p_{1}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7B%5Csigma%20_%7Bgen%7D%7D%7D%7Bm%7D%3D%5Cfrac%7B-%5Cfrac%7B%5Cdot%7BQ%7D%7D%7Bm%7D%7D%7BT_%7Bboundary%7D%7D%2Bc_%7Bp%7Dln%5Cfrac%7BT_%7B2%7D%7D%7BT_%7B1%7D%7D-R.ln%5Cfrac%7Bp_%7B2%7D%7D%7Bp_%7B1%7D%7D)
![\frac{\dot{\sigma _{gen}}}{m}=\frac{-30}{315}+1.1ln\frac{670}{980}-0.287.ln\frac{100}{400}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7B%5Csigma%20_%7Bgen%7D%7D%7D%7Bm%7D%3D%5Cfrac%7B-30%7D%7B315%7D%2B1.1ln%5Cfrac%7B670%7D%7B980%7D-0.287.ln%5Cfrac%7B100%7D%7B400%7D)
![\frac{\dot{\sigma _{gen}}}{m}=0.0952+0.4183+0.3978](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cdot%7B%5Csigma%20_%7Bgen%7D%7D%7D%7Bm%7D%3D0.0952%2B0.4183%2B0.3978)
kJ/kg-K
For this case, the first thing you should know is that the length of a football field is around 100 meters.
We must then look for a measure close to this value.
We have the following unit conversion:
1 meter = 10 decimeters
Applying the conversion we have:
![(1000 dm)*(\frac{1}{10} \frac{m}{dm}) = 100 m](https://tex.z-dn.net/?f=%20%281000%20dm%29%2A%28%5Cfrac%7B1%7D%7B10%7D%20%5Cfrac%7Bm%7D%7Bdm%7D%29%20%3D%20100%20m%20%20)
Therefore, the measure closest to a soccer field is:
1000 dm
Answer:
The length of a football field is closest to:
(2) 1000 dm