1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet-ann [11.9K]
2 years ago
7

Kinetic energy increases as

Physics
2 answers:
HACTEHA [7]2 years ago
7 0
Answer is C
I did it in class
Snowcat [4.5K]2 years ago
3 0
C. Both mass and velocity increase
EXPLANATION:
Doubling the mass, doubles the kinectic energy. so it is higher.
Doubling the velocity, Quadruples the kinetic energy.
So Both mass and velocity increase will result in an increase in the kinetic energy
You might be interested in
What increases when the frequency of a sound increases
andrew-mc [135]
The sound is basically just frequency. Because the sound becomes higher in pitch.

<span>
</span>
4 0
3 years ago
Which of the following is the only requirement for an object to be in projectile motion? A. The horizontal and vertical motions
NARA [144]
The answer is d, gravity is the only force acting on the object
8 0
3 years ago
How can you prove that air contains carbon dioxide?​
pickupchik [31]

Answer:

Limewater can be used to detect carbon dioxide. If carbon dioxide is bubbled through limewater then it turns from clear to cloudy/milky in colour. This is why limewater used in a simple respirometer can show that more carbon dioxide is present in exhaled air compared to inhaled air.

Explanation:

4 0
3 years ago
Read 2 more answers
A 0.0663 kg ingot of metal is heated to 241◦C
Westkost [7]

Answer:280.216j/kg°C

Explanation:

Mass of metal=0.0663kg

mass of water=0.395kg

Final temperature=27.4°C

Temperature of metal=241°C

Temperature of water=25°C

specific heat capacity of water=4186j/kg°C

0.0663xax(241-27.4)=0.395x4186x(27.4-25)

0.0663xax213.6=0.395x4186x2.4

14.16168a=3968.328

a=3968.328 ➗ 14.16168

a=280.216j/kg°C

4 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
Other questions:
  • Which number is not rounded correctly?
    9·2 answers
  • The circuit below represents a _ circuit<br> .Series<br> .Micro<br> .Parallel<br> .Complex
    15·1 answer
  • Sarah's mom takes a parkway to work. It takes her 30 minutes to travel from mile marker 88 where she enters to her exit at mile
    14·1 answer
  • Imagine you are studying the turgor pressure at two different ends of a sieve tube. One end of the sieve tube is located within
    14·1 answer
  • Two 2.0-cm-diameter insulating spheres have a 6.60 cm space between them. One sphere is charged to + 76.0 nC , the other to - 30
    10·1 answer
  • A car of mass 750 kg has an initial speed of 75 mph. Traveling in a straight line, its speed is increased uniformly to 120 mph i
    5·1 answer
  • Which of the following best defines
    8·1 answer
  • Distance= 10km due West in 1hour calculate the velocity​
    9·2 answers
  • PLEASE HELP 100 POINTS!!!!!
    5·2 answers
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!