Answer:
30.62 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 55 L
Initial pressure (P₁) = 3.2 atm
Initial temperature (T₁) = 520 K
Final temperature (T₂) = 760 K
Final pressure (P₂) = 8.4 atm
Final volume (V₂) =?
The final volume of the gas can be obtained as follow:
P₁V₁ / T₁ = P₂V₂ / T₂
3.2 × 55 / 520 = 8.4 × V₂ / 760
176 / 520 = 8.4 × V₂ / 760
Cross multiply
520 × 8.4 × V₂ = 176 × 760
4368 × V₂ = 133760
Divide both side by 4368
V₂ = 133760 / 4368
V₂ = 30.62 L
Therefore, the new volume of the gas is 30.62 L
Answer:
No.
Explanation:
The reason comes the <em>Law of Conservation of Mass</em>.
In an ordinary chemical reaction, <em>you cannot create or destroy atoms</em>.
So, you must have as many atoms at the beginning of a reaction (in the reactants) as at the end (in the products)
We use this principle to balance chemical equations.
For example, the equation for the formation of water from hydrogen and oxygen is
2H₂ + O₂ ⟶ 2H₂O
There are four atoms of H and two of O both before and after the reaction.
Answer:
14.7 lbs
Explanation:
Air pressure is the weight of the air above us. It is approximately 14.7 pounds or lbs per square inch at sea level. It means that an air column weights 14.7 lbs, 1 square inch in diameter, reaching all the way up to the top of the atmosphere.