Nuclear fusion and nuclear fission are two different types of energy-releasing reactions that occur in the nuclei of an atom.
Here are the major differences between the two:
1. To differentiate the two, fission is the splitting of an atom into two or more smaller atoms while fusion is the conjoining or fusion of two or smaller atoms into larger one.
2. Fission does not normally occur in nature while fusion occurs mostly in heavenly bodies such as the stars.
3.Fission produces highly radioactive particles that can be hazardous to both the living things and its habitat or environment while fusion is "clean energy" and "environmental friendly" meaning there are fewer radioactive particles are produced. But if a fission "trigger" is being used, there will be radioactive particles produced.
Among the two nuclear changes, fission is widely used because this reaction produces heat in nuclear reactor. This heat is used to generate steam which operates the turbines to eventually produce electricity.
Answer:
D - Thermodynamics
Explanation: I just took the quiz
<span>if given element is neutral, than it has to have same number of protons and electrons. so in this case it is 12 electrons.</span><span>
Hope it helps :)
</span>
Answer:
Total energy required to raise the temperature of 425 g of tin from 298.15 K to 505.05 K and to melt the tin at 505.05 K is 45.249 kiloJoules.
Explanation:
Mass of the tin ,m= 425 g
Heat capacity of the tin ,c= 0.227 J/g K
Initial temperature of the tin ,
= 25.0 °C = 298.15 K
Final temperature of the tin,
= 231.9 °C = 505.05 K
Let the heat required to change the temperature of tin from 298.15 K to 505.05 K be Q.


Heat required to melt tin at 505.05 K be Q'
The heat of fusion of tin metal =

Total energy required to raise the temperature of 425 g of tin from 298.15 K to 505.05 K and to melt the tin at 505.05 K is:
= Q+Q' = 19.961 kJ + 25.288 kJ = 45.249 kJ