Answer:
second-law efficiency = 62.42 %
Explanation:
given data
temperature T1 = 1200°C = 1473 K
temperature T2 = 20°C = 293 K
thermal efficiency η = 50 percent
solution
as we know that thermal efficiency of reversible heat engine between same temp reservoir
so here
efficiency ( reversible ) η1 = 1 -
............1
efficiency ( reversible ) η1 = 1 -
so efficiency ( reversible ) η1 = 0.801
so here second-law efficiency of this power plant is
second-law efficiency =
second-law efficiency =
second-law efficiency = 62.42 %
Alloys were stronger and more durable
Answer:
the elongation of the metal alloy is 21.998 mm
Explanation:
Given the data in the question;
K = σT/ (εT)ⁿ
given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,
strain-hardening exponent n = 0.22
we substitute
K = 345 / 
K = 815.8165 Mpa
next, we determine the true strain
(εT) = (σT/ K)^1/n
given that σT = 412 MPa
we substitute
(εT) = (412 / 815.8165 )^(1/0.22)
(εT) = 0.04481 mm
Now, we calculate the instantaneous length
= 
given that
= 480 mm
we substitute
=
× 
= 501.998 mm
Now we find the elongation;
Elongation = 
we substitute
Elongation = 501.998 mm - 480 mm
Elongation = 21.998 mm
Therefore, the elongation of the metal alloy is 21.998 mm
Answer:
SaaS
Explanation:
Software as a service (SaaS) is also called software on demand, it involves a third party that centrally hosts the software and provides it to the end user.
All aspects of hosting is handled by the third party: application, data, runtime, middleware, operating system, server, virtualization, storage and networking are all handled by the provider.
This is an ideal software service for Fictional corp, as there will be no need to hire additional IT staff to maintain the new CRM software.