Answer:
The binary search tree BST that is created is shown in the figure in the attached file
The missing part of the question is to draw the balanced binary search tree containing the same numbers given in the question.
Answer A the more traing the more you will know
Explanation:
Answer:
the maximum length of specimen before deformation is found to be 235.6 mm
Explanation:
First, we need to find the stress on the cylinder.
Stress = σ = P/A
where,
P = Load = 2000 N
A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4
A = 1.0752 x 10^-5 m²
σ = 2000 N/1.0752 x 10^-5 m²
σ = 186 MPa
Now, we find the strain (∈):
Elastic Modulus = Stress / Strain
E = σ / ∈
∈ = σ / E
∈ = 186 x 10^6 Pa/107 x 10^9 Pa
∈ = 1.74 x 10^-3 mm/mm
Now, we find the original length.
∈ = Elongation/Original Length
Original Length = Elongation/∈
Original Length = 0.41 mm/1.74 x 10^-3
<u>Original Length = 235.6 mm</u>
Answer:
8 mm
Explanation:
Given:
Diameter, D = 800 mm
Pressure, P = 2 N/mm²
Permissible tensile stress, σ = 100 N/mm²
Now,
for the pipes, we have the relation as:
where, t is the thickness
on substituting the respective values, we get
or
t = 8 mm
Hence, the minimum thickness of pipe is 8 mm
Answer:
A key element is powering economies with clean energy, replacing polluting coal - and gas and oil-fired power stations - with renewable energy sources, such as wind or solar farms. This would dramatically reduce carbon emissions. Plus, renewable energy is now not only cleaner, but often cheaper than fossil fuels
Explanation:
here is your answer if you like my answer please follow