Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.
We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>
Answer:
Explanation:
False --> A cylindrical capacitor is essentially a parallel plate capacitor rolled into a tube. This is because a cylindrical capacitor comprises two cylinders.
False --> The dielectric constant indicates the distance by which the two plates of a capacitor are separated.
True --> The charge on a capacitor increases quickly at first, then much more slowly as the capacitor charges. This is because the charge on the capacitor increases exponentially.
False --> The voltage across a capacitor in an RC circuit increases linearly during charging. This is because the voltage increases exponentially.
True --> One of the principal purposes of a capacitor is to store electric potential energy.
True --> A capacitor charges rapidly when connected to an RC circuit with a battery. This is because a cylindrical capacitor is basically a parallel plate capacitor rolled into a tube.
You can look at groups in the same group (the columns), since they tend to have similar properties. For example, the alkali metals in group one react aggressively with water and form white compounds.