The final destination to where some of the electrons go to at the end of cellular respiration would be D. Oxygen. Assuming that this aerobic cellular respiration, the final electron acceptor is that of oxygen.
Answer: Object B will heat up more.
Explanation:
The formula for specific heat is as follows.
Q = 
Where,
Q = heat provided
m = mass
C = specific heat
= change in temperature
Now, both the objects have same mass and equal amount of heat is applied.
According to the formula, the equation will be as follows.
= 
= 
Cancel m from both sides, as mass is same. Therefore,
= 
Cancel out the initial temperature and put the values of specific heat, then the equation will be as follows.
= 
Therefore, from the above equation it can be concluded that the object with low specific heat will heat up more as its specific heat will be inversely proportional to its final temperature.
Hence, object B will heat up more.
Lymphocytes and the other formed elements are developed from pluripotent stem cells. The pluripotent stem cells generate myeloid stem cells and lymphoid stem cells. Myeloid cells start and complete their development in red bone marrow and give rise to red blood cells, platelets, eosinophils, basophils, neutrophils, and monocytes. Lymphoid stem cells begin development in the red bone marrow, but some are completed in the lymphatic tissues, where they give rise to lymphocytes. The B cell lymphocytes begin and finish in the red bone marrow and the T cell lymphocytes begin in the red bone marrow, but they mature in the thymus.
Hydrolysis of Methyl Benzoate yields Benzoic Acid and Methanol. This reaction is also called as
Tranesterification (reverse of esterification). Acid in this reaction protonates the carbonyl oxygen, resulting in increasing electrophillic character of carbonyl carbon. Water acts as a nucleophile and methoxide leaves as a good leaving group.
Mechanism is shown below,
Answer:
The mass of oxygen gas dissolved in a 5.00 L bucket of water exposed to a pressure of 1.13 atm of air is 0.04936 grams.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
where,
= Henry's constant =
= partial pressure of oxygen
We have :
Pressure of the air = P
Mole fraction of oxygen in air = 

= Henry's constant =
Putting values in above equation, we get:
Moles of oxygen gas = n
Volume of water = V = 5 L



Mass of 0.001542 moles of oxygen gas:
0.001542 mol × 32 g/mol = 0.04936 g
The mass of oxygen gas dissolved in a 5.00 L bucket of water exposed to a pressure of 1.13 atm of air is 0.04936 grams.