Answer:
Explanation:
First we need to find how many moles of ammonium weigh 62 grams.
Molar mass of NH4 = (14.0)+(4*1.0) grams
or 18.0 grams/mole
62 (g)/18(g/mole) = 3.444... moles of NH4
If it is dissolved in 5 litres of water, the concentration will be 3.444moles/5L
or 0.6888 M.
First, it combines with carbon dioxide in the soil to form a weak acid called carbonic acid. ... Carbonic acid slowly dissolves away minerals in rock, especially the carbonate minerals that make up limestone and marble. The weak acid decomposes the insoluble rock into watersoluble products that move into the groundwater.
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.