The answer is Rubidium (Rb)
Explanation:
is anyone here in the year 2018
First, we convert the depth of the water into meters. This is:
60 feet = 18.3 meters
Now, we compute the additional pressure exerted due to the water, which is given by:
Pressure = density * gravitational field strength * height
P = 1000 * 9.81 * 18.3
P = 179.5 kPa
The atmosphere pressure is 101.325 kPa
The pressure of the gas bubbles 60 feet under water will be:
179.5 + 101.325 = 280.825 kPa
The pressure at the surface of the water will be equal to the atmospheric pressure, 101.325 kPa.
Because of this decrease in external pressure as gas bubbles rise, they are seen to expand.
Answer:
k = -0.0525 s⁻¹
Explanation:
The equaiton for a first order reaction is stated below:
ln[A]=−kt+ln[A]₀.
[A] = 5.50 x 10⁻³ M
[A]₀ = 7.60 x 10⁻² M
t = 85.0 - 35.0 = 50.0 s
The rate constant is represented by k and can be calculated substituting the values given above:
k = (ln[A]₀ - ln[A])/t
k = (ln5.50 x 10⁻³ M - ln7.60 x 10⁻² M)/50.0s
k = -0.0525 s⁻¹