Answer:
On the basis of this explanation, if the rate of lactate production is high enough, the cellular proton buffering capacity can be exceeded, resulting in a decrease in cellular pH. These biochemical events have been termed lactic acidosis. ... Every time ATP is broken down to ADP and Pi, a proton is released
Explanation:
Answer:
Thomson placed two magnets on either side of the tube, and observed that this magnetic field also deflected the cathode ray. The results of these experiments helped Thomson determine the mass-to-charge ratio of the cathode ray particles, which led to a fascinating discovery, minus the mass of each particle was much, much smaller than that of any known atom. Thomson repeated his experiments using different metals as electrode materials, and found that the properties of the cathode ray remained constant no matter what cathode material they originated from. From this evidence, Thomson made the following conclusions:
The cathode ray is composed of negatively-charged particles.
The particles must exist as part of the atom, since the mass of each particle is only ~1/2000 the mass of a hydrogen atom.
These subatomic particles can be found within atoms of all elements.
While controversial at first, Thomson's discoveries were gradually accepted by scientists. Eventually, his cathode ray particles were given a more familiar name: electrons. The discovery of the electron disproved the part of Dalton's atomic theory that assumed atoms were indivisible. In order to account for the existence of the electrons, an entirely new atomic model was needed.
Explanation:
Here is the full question:
Air containing 0.04% carbon dioxide is pumped into a room whose volume is 6000 ft3. The air is pumped in at a rate of 2000 ft3/min, and the circulated air is then pumped out at the same rate. If there is an initial concentration of 0.2% carbon dioxide, determine the subsequent amount in the room at any time.
What is the concentration at 10 minutes? (Round your answer to three decimal places.
Answer:
0.046 %
Explanation:
The rate-in;

= 0.8
The rate-out
= 
= 
We can say that:

where;
A(0)= 0.2% × 6000
A(0)= 0.002 × 6000
A(0)= 12

Integration of the above linear equation =

so we have:



∴ 
Since A(0) = 12
Then;



Hence;



∴ the concentration at 10 minutes is ;
=
%
= 0.0456667 %
= 0.046% to three decimal places
(missing part of your question):
when we have K = 1 x 10^-2 and [A] = 2 M & [B] = 3M & m= 2 & i = 1
So when the rate = K[A]^m [B]^i
and when we have m + i = 3 so the order of this reaction is 3 So the unit of K is L^2.mol^-2S^-1
So by substitution:
∴ the rate = (1x 10 ^-2 L^-2.mol^-2S^-1)*(2 mol.L^-1)^2*(3mol.L^-1)
= 0.12 mol.L^-1.S^-1
In order to balance this equation you need to count each element and how many of the individual elements are in the equation.
_H2+N2=2 NH3
You multiply the 2 (Which is the coefficient) by the 3 (which is the subscript) This would equal 6 which indicated there are 6 hydrogen atoms on the right side so the left side should also have 6 hydrogen atoms
The missing coefficient on the left side must multiple the 2 to become 6 hydrogen
Answer=3