Answer:
B. electrons possess the largest charge-to-mass ratio among the subatomic particles listed in the four choices.
Explanation:
Consider the mass of each particle. Express the masses in atomic mass units:
- Protons: approximately 1.007 amu each;
- Neutrons: approximately 1.009 amu each;
- Electrons: approximately 0.0005 amu each.
Similarly, consider the charge on each particle. Express the charges in multiples of the fundamental charge:
- Protons: +1 e;
- Neutrons: 0;
- Electrons: -1 e.
Calculate the charge-to-mass ratio for the three species:
- Protons: approximately
; - Neutrons: 0;
- Electrons: approximately
.
Almost all nuclei contain protons and neutrons. The only exception is the hydrogen-1 nucleus, which contains only one proton and no neutron. The mass of the nucleus is approximately the same as the sum of its components' masses. The extra neutron will only add to the mass of the nucleus (the denominator) without contributing to the charge (the numerator.) As a result, the charge-to-mass ratio of nuclei will be positive but no greater than the charge-to-mass ratio of protons.
Among the particles in the four choices, the charge-to-mass ratio is the greatest for electrons.
P1v1=p2v2
47.5*125=66.2*v2
v2= p1v1/p2
=(47.5)(125)/(66.2)
=89.69ml
Answer: There are 0.00269 moles of acetic acid in buffer.
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of acetic acid solution = 0.0880 M
Volume of solution = 30.6 mL
Putting values in equation 1, we get:

Thus there are 0.00269 moles of acetic acid in buffer.
Because the Earth<span> is a sphere, the surface gets much more intense sunlight, hence heat, at the equator than at the poles.</span>
The distribution of heat around the globe, and through the year, coupled with the physical properties of air, produce a distinctive pattern of climatic zones.