The original concentration of the acid solution is 6.175
10^-4 mol / L.
<u>Explanation:</u>
Concentration is the ratio of solute in a solution to either solvent or total solution. It is expressed in terms of mass per unit volume
HBr + NaOH -----> NaBr + H2O
There is a 1:1 equivalence with acid and base.
Moles of NaOH = 72.90
10^-3
0.25
= 0.0182 mol.
[ HBr ] = moles of base / volume of a solution
= 0.0182 / 29.47
= 6.175
10^-4 mol / L.
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.
33 - 15 = 18
This element is P-33
Belive it or not but an oreo is a mixture. LOL
Ca2+ would bond to any element in a 1 to 1 ratio that had an equal and opposite charge.
Neon is a noble gas, and doesn’t form bonds m
Carbon isn’t typically found in ion state, but if it did, it would likely by C4+
Flouring in ionic state is F1-, so you would need 2 flourines to cancel the 2+ charge of Calcium
Then the only option left would be Oxygen which, when in ion form is found be 2-