As the temperature of a gas increases, the average kinetic energy of the gas particles increases and the average speed of a gas particle increases.
According to the kinetic theory of gases, all gases are made of microscopic molecules that move in straight lines until they bump into another gas molecule or object. This transfer of energy causes molecules to move around faster and bump into each other more.
Kinetic energy is proportional to the speed of the molecules. As the speed of the colliding molecules increases, so does the total kinetic energy of all the gas molecules. It's pretty difficult to measure the speed of an individual gas molecule.
Instead, temperature can be used as a measure of the average kinetic energy of all the molecules in the gas. As the gas molecules gain energy and move faster, the temperature goes up. This is why Amy feels warmer!
To determine the average kinetic energy of gas molecules, we need to know the temperature of the gas, the universal gas constant (R), and Avogadro's number (NA).
Learn more about kinetic theory of gases here : brainly.com/question/11067389
#SPJ4
If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
Answer:
The new volume will be 367mL
Explanation:
Using PV = nRT
V1 = 259mL = 0.000259L
n1 = 0.552moles
At constant temperature and pressure, the value is
P * 0.000259 = 0.552 * RT ------equation 1
= 0.552 / 0.000259
= 2131.274
V2 = ?
n2 = 0.552 + 0.232
n2 = 0.784mole
Using ideal gas equation,
PV = nRT
P * V2 = 0.784 * RT ---------- equation 2
Combining equations 1 and 2 we have;
V2 = 0.784 / 2131.274
V2 = 0.000367L
V2 = 367mL
Answer:Referring to the fact that a neuron either fires completely or does not fire at all.
Explanation:
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.