Let me try:
Normal force= 169.74N
Coefficient of kinetic friction= 0.577
Explanation
a. For a given inclined plane, normal friction is equal to the force perpendicular to the plane which is equal to
mgcos theta = 20×9.8× cos30 = 169.74N
b. The coefficient of kinetic friction for an inclined plane is given as
tan theta =tan 30 = 0.577
Weight = (mass) x (gravity).
It always acts downward.
On Earth, the acceleration of gravity is 9.807 m/s².
On the Moon, the acceleration of gravity is 1.623 m/s².
On Earth, the rocket's weight is (0.8kg) x (9.8 m/s²) = 7.84 newtons
On the Moon, the rocket's weight is (0.8kg) x (1.62 m/s²) = 1.3 newtons
The force of the rocket engine acts upward.
Its magnitude is 12 newtons. (From the burning chemicals.
Doesn't depend on local gravity. Same force everywhere.)
Now we have all the data we need to mash together and calculate the
answers to the question. You might choose a different method, but the
machine that I have selected to do the mashing with is Newton's 2nd law
of motion:
Net Force = (mass) x (acceleration).
Since the question is asking for acceleration, let's first solve Newton's law
for it. Divide each side by (mass) and we have
Acceleration = (net force) / (mass) .
On Earth, the forces on the rocket are
(weight of 7.84 N down) + (blast of 12 N up) = 4.16 newtons UP (net)
Acceleration = (4.16 newtons UP) / (0.8 kg) = 5.2 m/s² UP .
On the moon, the forces on the rocket are
(weight of 1.3 N down) + (blast of 12 N up) = 10.7 newtons UP (net)
Acceleration = (10.7 newtons UP) / (0.8 kg) = 13.375 m/s² UP
The force on an object use Socratic glad to help ..
Yo, sorry I just resized I am so dumb.
The Answer would be C.
Becuase the wall is pushing off 9 becuase it took 5 and bounced back off 4 so
9 times 8= 72 kg m/s
Sorry about that ):