Answer:
B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
Explanation:
Hello,
In this case, we should understand oxidizing agents as those substances able to increase the oxidation state of another substance, therefore, in B. reaction we notice that copper oxidation state at the beginning is zero (no bonds are formed) and once it reacts with nitric acid, its oxidation states raises to +2 in copper (II) nitrate, thus, in B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2 nitritc acid is acting as the oxidizing agent.
Moreover, in the other reactions, copper (A.), sodium (C. and D.) remain with the same initial oxidation state, +2 and +1 respectively.
Regards.
There are 48.72 g Fluorine ions
<h3>Further explanation
</h3>
Proust stated the Comparative Law that compounds are formed from elements with the same Mass Comparison so that the compound has a fixed composition of elements
In the same compound, although from different sources and formed by different processes, it will still have the same composition/comparison
%F in CaF₂ :

mass of Fluorine :

So mass Fluorine ions(2 ions F in CaF₂⇒Ca²⁺+2F⁻) :

Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.
is the solubility of the gas when it exerts a partial pressure of 92.4kPa.
<h3>What is Henry's law?</h3>
Mathematically, we can get this from Henry's law
From Henry law;
Concentration = Henry constant × partial pressure
Thus Henry constant = 
Henry constant = 

Hence,
is the solubility of the gas when it exerts a partial pressure of 92.4kPa.
Learn more about the Henry's law here:
brainly.com/question/16222358
#SPJ1