Answer:
The acceleration of
is 
Explanation:
From the question we are told that
The mass of first block is 
The angle of inclination of first block is 
The coefficient of kinetic friction of the first block is 
The mass of the second block is 
The angle of inclination of the second block is 
The coefficient of kinetic friction of the second block is 
The acceleration of
are same
The force acting on the mass
is mathematically represented as

=> 
Where T is the tension on the rope
The force acting on the mass
is mathematically represented as


At equilibrium

So

making a the subject of the formula

substituting values 
=> 
Answer:
A) 1.5 v
B) Top plate is at higher voltage than the bottom plate
Explanation:
Battery value set between 0.0 V and 1.5 V
a) The potential difference between the plates
Δ V = V1( potential at top plate) - V2( potential at lower plate )
potential at top plate = 1.5 V
potential at lower plate = 0.0 V
hence potential difference = 1.5 V
b ) The top plate is always connected to the positive terminal of the DC source ( which is at a higher potential )while the bottom plate is connected to the negative terminal of the DC source ( which is at a lower potential )
hence the Top plate is at higher voltage than the bottom plate
The student’s suggestion who provides enough evidence to be able to determine the value of each resistor is student D.
<h3>What is current?</h3>
The current is the stream of charges which flow inside the conductors when connected across the end of voltage.
For the given set of parallel resistors, we need to find the resistance of each resistor.
From the Ohm's law, V =IR
R = V/I
Resistance value depends upon the voltage difference across the resistor and the current flowing through that resistance.
Thus, the student D gives enough evidence to find resistance of the circuit is
Learn more about current.
brainly.com/question/10677063
#SPJ1
use the formula
v= u+ at
v is final velocity , u is initial velocity , a is acceleration and t is time
put the values
20 = 0+ a×5
a = 4 m/s²
Explanation:
It is known that relation between force and acceleration is as follows.
F =
I is given that, mass is 1090 kg and acceleration is 21 m/s. Therefore, we will calculate force as follows.
F =
=
= 1430.625 N
Also, it is known that
= 7.70 degrees
Thus, we can conclude that the maximum steepness for the car to still be able to accelerate is 7.70 degrees.