The answer for this problem would be:
Assuming non-relativistic momentum, then you have:
ΔxΔp = mΔxΔv = h / (4)
Δv = h / (4πmΔx)
m ~ 1.67e-27 h ~ 6.62e-34,Δx = 4e-15 -->
Δv ~ 6.62e-34 / (4π * 1.67e-27 * 4e-15) ~ 7,886,270 m/s ~ 7.89e6 m/s
That's about 1% of the speed of light, the assumption that it's non-relativistic.
Answer:
From 0 -4 seconds the acceleration is positive. (The graph is going upwards.)
From 6-10 seconds the acceleration is negative. (The graph is going downwards.)
Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s
Answer:
Current in each branch will be 2.5 A
Explanation:
We have given that a circuit has three branch each has a resistance of 37.5 ohm
We have also given that a total current of 7.5 A is flows through the circuit
As we know that in parallel circuit total current is the sum of current flowing through each branch
As the resistances of each branch is same so current will also be same
As there is 3 branches in circuit so current in each branch will be 