<span>The process of making alloys involves ( Heating ) pure metals to remove impurities. Then the pure metals are(mixed) with other components. </span><span>An </span>alloy<span> is a mixture of metals or a mixture of a metal and another element. </span>Alloys<span> are defined by a metallic bonding character.</span>
Answer:
This question is asking to identify the following variables:
Independent variable (IV): Battery
Dependent variable (DV): Time the clock stopped
Constant: Same clock
Control: No stated control
Explanation:
The independent variable in an experiment is the variable that is subject to manipulation or change by the experimenter. In this experiment, the independent variable is the BATTERIES (Duracell, Energizer, Kroger brand, EverReady).
The dependent variable is the variable that responds to the changes made to the independent variable. It is the variable that the experimenter measures. In this case, the dependent variable is the TIME IT TAKES FOR THE CLOCK TO STOP.
Constants or control variable is the variable that the experimenter keeps constant or unchanged for all groups throughout the experiment in order not to influence the outcome of the experiment. The constant in this case is the SAME CLOCK USED.
Control group is the group that does not receive the experimental treatment or independent variable in an experiment. In this case, all groups received a different kind of battery.
Answer:
The magnitude of the flux of electric field through a square of surface area is zero.
Explanation:

It is given that square box is parallel to yz-plane which has normal vector perpendicular to plane in x-direction. Angle between normal vector of area and electric field is 90°. Substituting in (1)

yeah it definitely 2 .:) :)
Answer:
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)
Explanation:
Energy level transition occur when light rays strikes a metal surface to emit electron from the surface, a term known as photoelectric effect. This amount of electron emitted from the surface depends on the speed of light ray striking the metal surface.
Energy transition therefore occurs due to the amount of kinetic energy gained by the electrons. The electrons with higher kinetic energy are excited to the higher level (excited state) compare to the electron with low kinetic energy (this energy are energy in the ground state)