Answer:
2.76×10⁻¹⁰ C
Explanation:
Applying,
V = W/q................... Equation 1
Where V = Electric Potential, E = Electric potential energy, q = charge.
make q the subject of the equation
q = W/V................ Equation 2
From the question,
Given: W = 4.26×10⁻⁸ J, V = 154.5 V
Substitute these values into equation 2
q = 4.26×10⁻⁸/154.5
q = 2.76×10⁻¹⁰ C
Let s = rate of rotation
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>
You haven't given us enough information to figure out an answer.
It depends on whether the light bulb is part of a series or parallel circuit,
and whether there are also OTHER light bulbs in the same circuit.
-- If the light bulb is the ONLY one in the circuit, or if it's one of
several bulbs that are connected in parallel across the same battery,
and you replace it with a bulb that has higher resistance, then the
new one will be LESS BRIGHT than the original one.
-- If the light bulb is one of two or more bulbs connected in series
across the battery, and you replace it with a bulb that has higher
resistance, then the new one will be BRIGHTER than the original
one was.
-- <em>Mechanical waves DO</em> require a medium in order to travel from place to place. (Sound can't travel without some material to travel through on the way.)
-- <em>Electromagnetic waves do NOT</em> need a medium in order to travel from place to place. (Sunlight reaches us from the Sun without anything to travel through on the way.)
Answer:
The magnitude of the induced electric field at a point 2.5 cm from the axis of the solenoid is 8.8 x 10⁻⁵ V/m
Explanation:
given information:
radius, r = 2.0 cm
N = 700 turns/m
decreasing rate, dI/dt = 9.0 A/s
the magnitude of the induced electric field at a point 2.5 cm (r = 2.5 cm = 0.025 m) from the axis of the solenoid?
the magnetic field at the center of solenoid
B = μ₀nI
where
B = magnetic field (T)
μ₀ = permeability (1.26× 10⁻⁶ T.m/A)
n = the number turn per unit length (turn/m)
I = current (A)
dB/dt = μ₀n dI/dt (1)
now we calculate the induced electric field by using
E =
= 2E/r (2)
where
E = the induced electric field (V/m)
we substitute the firs and second equation, thus
dB/dt = μ₀n dI/dt
2E/r = μ₀n dI/dt
E = (1/2) r μ₀n dI/dt
= (1/2) (0.025) (1.26× 10⁻⁶) (700) (8)
= 8.8 x 10⁻⁵ V/m