Answer:
There are 1.4754246675000002e+24 atoms of Hydrogen within the measurement of 2.45 moles of hydrogen!
Explanation:
Answer is: molarity of hydrofluoric solution is 0.09 M.
Chemical reaction: HF(aq) + KOH(aq) → KF(aq) + H₂O(l).
V(HF) = 30.0 mL.
c(KOH) = 0.122 M.
V(KOH) = 22.15 mL:
c(HF) = ?.
From chemical reaction: n(HF) : n(KOH) = 1 : 1.
n(HF) = n(KOH).
c(HF) · V(HF) = c(KOH) · V(KOH).
c(HF) = c(KOH) · V(KOH) ÷ V(HF).
c(HF) = 0.122 M · 22.15 mL ÷ 30 mL:
c(HF) = 0.09 M.
Explanation:
Carbon-12 atoms have stable nuclei because of the 1:1 ratio of protons and neutrons.
Carbon-14 atoms have nuclei which are unstable. C-14 atoms will undergo alpha decay and produce atoms of N-14. Carbon-14 dating can be used to determine the age of artifacts which are not more than 50,000 years old.
Answer:
%N = 25.94%
%O = 74.06%
Explanation:
Step 1: Calculate the mass of nitrogen in 1 mole of N₂O₅
We will multiply the molar mass of N by the number of N atoms in the formula of N₂O₅.
m(N): 2 × 14.01 g = 28.02 g
Step 2: Calculate the mass of oxygen in 1 mole of N₂O₅
We will multiply the molar mass of O by the number of O atoms in the formula of N₂O₅.
m(O): 5 × 16.00 g = 80.00 g
Step 3: Calculate the mass of 1 mole of N₂O₅
We will sum the masses of N and O.
m(N₂O₅) = m(N) + m(O) = 28.02 g + 80.00 g = 108.02 g
Step 4: Calculate the percent composition of N₂O₅
We will use the following expression.
%Element = m(Element)/m(Compound) × 100%
%N = m(N)/m(N₂O₅) × 100% = 28.02 g/108.02 g × 100% = 25.94%
%O = m(O)/m(N₂O₅) × 100% = 80.00 g/108.02 g × 100% = 74.06%
Answer:
KOH(aq) + HCI(aq) -----> KCI(aq )+ H2O
base acid salt water
hope this helps :)
Explanation: