The daughter isotope : Radon-222 (Rn-222).
<h3>Further explanation</h3>
Given
Radium (Ra-226) undergoes an alpha decay
Required
The daughter nuclide
Solution
Radioactivity is the process of unstable isotopes to stable isotopes by decay, by emitting certain particles,
- alpha α particles ₂He⁴
- beta β ₋₁e⁰ particles
- gamma particles ₀γ⁰
- positron particles ₁e⁰
- neutron ₀n¹
The decay reaction uses the principle: the sum of the atomic number and mass number before and after decay are the same
Radium (Ra-226) : ₈₈²²⁶Ra
Alpha particles : ₂⁴He
So Radon-226 emits alpha α particles ₂He⁴ , so the atomic number decreases by 2, mass number decreases by 4
The reaction :
₈₈²²⁶Ra ⇒ ₂⁴He + ₈₆²²²Rn
Use the question marck Moles of CO2
The the giving = 0.624 mol O2
Find the CF faction = 1 mole= 32.00 of O2
O= 2x16.00= 32.00amu ( writte this in the cf fraction)
SET UP THE CHART
Always start with the giving
0.624 mol O2 / 1mol of CO2
___________ / _____________ = Cancel the queal ( O2)
/ 32.00c O2
/
/
Multiply the top and divide by the bottom
0.624 mol CO x 1mol CO2 = 0.624 divide by 32.00 O2 =0.0195
You should look at the giving number ( how many num u gor ever there)
Ur answer should have the same # as ur givin so
= 0.0195
= .0195 mol of CO2
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer is: the absolute pressure of the air in the balloon is 1.015 atm (102.84 kPa).
n = 0.250 mol; amount of substance.
V = 6.23 L; volume of the balloon.
T = 35°C = 308.15 K; temperature.
R = 0.08206 L·atm/mol·K, universal gas constant.
Ideal gas law: p·V = n·R·T.
p = n·R·T / V.
p = 0.250 mol · 0.08206 L·atm/mol·K · 308.15 K / 6.23 L.
p = 1.015 atm; presure of the air.