Answer:
When excited electrons fall to lower energy levels, they can release energy in the form of light. metal ions in the salts used in the flame tests.
Answer:
The Lydia Bourouiba is recorded is around more than the 100 sneezes and coughs cases.
Explanation:
Lydia Bouroubia was a mathematical physicist who does experiments on sneezes and coughs. She was a leading expert in coughs and sneezes. Sneezing is a phenomenal activity that occurs in our body to excrete the dust particles and germs.
The disease also spread through it. Lydia thought that her research will help people related to their health. It will help in stopping epidemics in public. It is a type of outbreak of disease at a bigger level in the public.
Answer:
5.55 L
Explanation:
This excersise can be solved by the Boyle's law.
This law for gases states that the pressure of a gas in a vessel is inversely proportional to the volume of the vessel.
P₁ . V₁ = P₂ . V₂
The law comes from the Ideal Gases Law, in the first term.
P . V = n . R . T In this case, n . R . T are all constant.
6.35 L . 88.6 kPa = 101.3 kPa . V₂
V₂ = (6.35 L . 88.6 kPa) / 101.3 kPa
V₂ = 5.55 L
It is inversely proportional because, as it happened in this case, pressure was increased, therefore volume decreased.
Answer:
0.645 L
Explanation:
To find the volume, you need to (1) convert grams to moles (using the molar mass) and then (2) calculate the volume (using the molarity ratio). The final answer should have 3 sig figs to match the sig figs of the given values.
(Step 1)
Molar Mass (KOH): 39.098 g/mol + 15.998 g/mol + 1.008 g/mol
Molar Mass (KOH): 56.104 g/mol
19.9 grams KOH 1 mole
-------------------------- x ----------------------- = 0.355 moles KOH
56.014 grams
(Step 2)
Molarity = moles / volume <----- Molarity ratio
0.550 M = 0.355 moles / volume <----- Insert values
(0.550 M) x volume = 0.355 moles <----- Multiply both sides by volume
volume = 0.645 L <----- Divide both sides by 0.550
speed equals wavelength times frequency so
.7 x 500 = 350