To find - Identify what kind of ligand (weak or strong), what kind
of wavelength (long or short), what kind of spin (high spin or
low spin) and whether it is paramagnetic or diamagnetic for
the following complexes.
1. [Mn(CN)6]4-
2. [Fe(OH)(H2O)5]2
3. [CrCl4Br2]3-
Step - by - Step Explanation -
1.
[Mn(CN)⁶]⁴⁻ :
Ligand - Strong
Wavelength - Short
Spin - Low spin
Number of unpaired electrons = 1 ∴ paramagnetic.
2.
[Fe(OH)(H₂O)₅]²⁺ :
Ligand - Weak ( both OH⁻ and H₂O )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 5 ∴ paramagnetic.
3.
[CrCl₄Br₂]³⁻ :
Ligand - Weak ( both Br⁻ and Cl⁻ )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 3 ∴ paramagnetic.
Answer:
[Top row] - Chemical bonds
[2nd Row L-R] - Force, Ionic, Covalent
[3rd Row L-R] - Atoms, Lost or Gained, Shared
[4th Row L-R] - More stable, Metal and Nonmetal, Nonmetal and Nonmetal
Explanation:
<u>Chemical bonds</u> are a<u> </u><u>force</u> that hold together <u>atoms</u> in a substance to make compounds <u>more stable.</u>
<u>Chemical bonds</u> include two kinds: <u>Ionic</u> and <u>Covalent.</u>
<u>Ionic</u> in which electrons are <u>lost or gained</u> where attraction is between a <u>Metal and Nonmetal.</u>
<u>Covalent</u> in which electrons are shared where attraction is between a <u>nonmetal and nonmetal</u>.
I have been able to fill the concept map using the correct terms or phrases. The concept map talks about chemical bonds. There are two types of chemical bonds; which ionic bond and covalent bond.
Answer:
The law is given by the following equation: PV = nRT, where P = pressure, V = volume, n = number of moles, R is the universal gas constant, which equals 0.0821 L-atm / mole-K, and T is the temperature in Kelvin.
Explanation:
Answer:
determining how many ozone molecules are lost in the atmosphere