In a solid state, the molecules have the least amount of energy. They just stick close together and vibrate in place. As the molecules gain more energy, they are able to move around more freely. In the liquid state, the molecules have enough energy to sort of tumble over each other.
Answer:
The answer is C. Hope this helps you out!
Answer: 4.22 grams of solute is there in 278 ml of 0.038 M 
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
Now put all the given values in the formula of molality, we get

mass of
= 
Thus 4.22 grams of solute is there in 278 ml of 0.038 M 
Answer:
(a) 0.047 g (b) 0.0016 oz (c) 0.0001 lb
Explanation:
The given mass of the sodium in the slice = 47 mg
(a) Mass has to be calculated in grams
The conversion of mg to g is shown below as:
1 mg = 10⁻³ g
So,
<u>Mass of sodium = 47 × 10⁻³ g = 0.047 g</u>
(b) Mass has to be calculated in ounces
The conversion of ounces to g is shown below as:
453.6 g = 16 oz
Or,
1 g = 16 / 453.6 oz
So,
<u>Mass of sodium = (0.047 × 16) / 453.6 oz = 0.0016 oz</u>
(c) Mass has to be calculated in pounds
The conversion of pounds to g is shown below as:
1 lb = 453.6 g
Or,
1 g = 1/ 453.6 lb
So,
<u>Mass of sodium = (0.047 × 1) / 453.6 oz = 0.0001 lb</u>
Ca^2+ and I^-
Na+ and Co3^2-
Ga^3+ and ClO3
Cu^2+ and F-
NH4^- and PO4^3-
Fe2+ and (SO4)^2-
Mg2+ and NO3^-
NH4^+ and NO2^-
K^+ and (C2H3O2)^- {C2H3O2 is acetate}
Na^+ and Cr2O7^2-