Answer:
gravitational potential energy.
Explanation:
Gravitational potential energy (GPE) can be defined as an energy possessed by an object or body due to its position above the earth surface.
Mathematically, gravitational potential energy is given by the formula;

Where,
G.P.E represents gravitational potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
This ultimately implies that, anytime there is height, the object must have gravitational potential energy.
Hence, an object possesses gravitational potential energy due to its height (position) and the earth's gravitational force.
The correct answer is true.
It is true that light fixtures and placement that create shadows on the set, that obscure or completely hide action in certain areas of the set, or that change as the main character’s emotional state changes are all ways that lighting can be used to heighten the drama and suspense in dramatic films.
Lighting plays an important role in film making because it can create scenes that enhance the de drama of the moment or the right mood that the director wants to share. Lighting in the film is an art because the basic principle is that the scene needs to look natural. From that principle, filmmakers and light specialist cand create many kinds of dramatic or jubilation moments if they know how to apply light principles to each scene.
Galileo Galilei is one of the key figures in the history of Science, being the first to apply the experimental-mathematical scientific method. He carried out experiments and careful observations in kinematics (his studies on the trajectory of projectiles are famous) and dynamics (it should be noted his careful experiments with inclined planes), establishing the first law of Dynamics (which Newton will later collect and refine in his Principles); and in Astronomy, with which he could unequivocally support the heliocentric theory.
His experiments were addressed by methodologies that allowed him to precisely find his mathematical calculations and to verify theories he was developing over time. His manuscripts were key to disseminate the applied method and extrapolate them to other scientific areas.
Therefore the correct answer is C.
Send wave from your location to the object and wait until echo is back.
Measure the time taken.
If you know the speed of wave (say sound wave), than just multiply by half time taken wave to return
Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values
