A substance's molar mass is calculated by multiplying its relative atomic mass by the molar mass constant (1 g/mol). ... By multiplying a given mass by the molar mass, the amount of moles of the substance can be calculated.
I won't give the answer, but here's the process: You have the weight of the object (0.500 lbs), and you want to convert that into the number of kernels. You are given the fact that 1 pound = 16 oz, and 1 oz=28.3 grams. So it should be apparent that you need to convert pounds to ounces first and then convert ounces to grams. Now that you the grams, you can easily figure out how many kernels there are because .125 grams equals the weight of one kernel.
Source: IGN
Explanation:
Immunoglobulin M is the first antibody produced on initial exposure to an antigen. It is also known as IgM.
It occurs as a primary response to the antigens against a particular baterium or virus. It is pentavalent in nature and has ten binding sites for antigens.
Therefore, it is concluded that when the body identifies a bacterium or a virus, it releases the antibody IgM.
Answer:
V₂ = 0.62 L
Explanation:
Given data:
Initial volume = 2.4 L
Initial temperature = 25°C
Final temperature = -196°C
Final volume = ?
Solution:
Initial temperature = 25°C (25+273 = 298 K)
Final temperature = -196°C ( -196+273 = 77 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 2.4 L × 77 K / 298 k
V₂ = 184.8 L.K / 298 K
V₂ = 0.62 L