A quadratic in vertex form can be represented as

a represents reflection over the x-axis, and a vertical stretch or compress
- is reflection and a fraction (1/2) represents a compression.
-h represents a shift of that many units to the right (-2 shifts to the
right two units)
k represents a shift up or down (-2 is shifting down 2 units_
Reflected over the x-axis, Vertically compressed by a factor of 1/2, shifted 2 units to the right, and shifted 2 units down
There are 100 tens in 1,000
Answer:

Step-by-step explanation:
<u><em>The complete question is</em></u>
A chef bought $17.01 worth of ribs and chicken. Ribs cost 1.89 per pound and chicken costs 0.90 per pound. The equation 0.90 +1.89r = 17.01 represents the relationship between the quantities in this situation.
Show that each of the following equations is equivalent to 0.9c + 1.89r = 17.01.
Then, explain when it might be helpful to write the equation in these forms.
a. c=18.9-2.1r. b. r= -10÷2c+9
we have that
The linear equation in standard form is

where
c is the pounds of chicken
r is the pounds of ribs
step 1
Solve the equation for c
That means ----> isolate the variable c
Subtract 1.89r both sides

Divide by 0.90 both sides

Simplify

step 2
Solve the equation for r
That means ----> isolate the variable r
Subtract 0.90c both sides

Divide by 1.89 both sides

Simplify

therefore
The equation
is equivalent
The equation is helpful, because if I want to know the number of pounds of chicken, I just need to substitute the number of pounds of ribs in the equation to get the result.
Well this is simple a calculator type problem...but if you are curious as the the algorithm used by simple calculators and such...
They use a Newtonian approximation until it surpasses the precision level of the calculator or computer program..
A newtonian approximation is an interative process that gets closer and closer to the actual answer to any mathematical problem...it is of the form:
x-(f(x)/(df/dx))
In a square root problem you wish to know:
x=√n where x is the root and n is the number
x^2=n
x^2-n=0
So f(x)=x^2-n and df/dx=2x so using the definition of the newton approximation you have:
x-((x^2-n)/(2x)) which simplifies further to:
(2x^2-x^2+n)/(2x)
(x^2+n)/(2x), where you can choose any starting value of x that you desire (though convergence to an exact (if possible) solution will be swifter the closer xi is to the actual value x)
In this case the number, n=95.54, so a decent starting value for x would be 10.
Using this initial x in (x^2+95.54)/(2x) will result in the following iterative sequence of x.
10, 9.777, 9.774457, 9.7744565, 9.7744565066299210578124802523397
The calculator result for my calc is: 9.7744565066299210578124802523381
So you see how accurate the newton method is in just a few iterations. :P
Answer:
Step-by-step explanation:
Using the alternative hypothesis (µ < µ0),
To find the p-value with test statistic -1.25 and assuming a standard level of significance of 0.05, using a p value calculator, the p-value is 0.1057 which is great that 0.05. Thus, the results is not significant.
Using the p value calculation.
1. Check the left tailed z table as the test statistic is negative,
2. Then find the probabilitythat z is greater than your test statistic (look up your test statistic on the z-table- the value under 1.2 and 0.05 which is 0.8944
3. Then, find its corresponding probability, and subtract it from 1 to get your p-value- 1-0.8944 = 0.1056.