1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
3 years ago
12

F (x) = 3x^2 - 7x - 32 What is the value of f(-4)?

Mathematics
1 answer:
Zielflug [23.3K]3 years ago
5 0

Answer:

f (-4) = 3x(-4)^2 - 7x(-4) - 32 =  44

Step-by-step explanation:

you should replace every x with the number given which is here equals -4

You might be interested in
It says solve by factoring.
dsp73

Answer:

Alright well Graph each side of the equation. The solution is the x - value of the point of intersection k = 4.582 Hope this helps :)

Step-by-step explanation:


6 0
3 years ago
Read 2 more answers
If a polynomial function f(x) has roots 3+
irinina [24]

Answer:

Step-by-step explanation:

3+√5 is a root.

so 3-√5 is also a root

or (x-(3-√5)) is also a factor of f(x)

7 0
3 years ago
Convert 28/50to a percent
velikii [3]
The answer is 56%
You first divide 28 by 50=.56, then since it's a decimal, you move the decimal twice to the right to make a percentage=56%
3 0
3 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
Write a quadratic function with zeroes 0 and 8.
Jlenok [28]

Answer:

x^2-8x=0

Step-by-step explanation:

the quadratic function should be as follows:

x^2-8x=0

Now let's confirm that the zeros of the function are 0 and 8

x^2-8x=0=x(x-8)=0

Therefore we can see that if x = 0

0^2*8*0=0\\0=0

the equation is fulfilled

And we also have (x-8)

for this expresion to be equal to zero:

x-8=0\\x=8

thus, if x = 8

8^2-8*8=0\\64-64=0\\0=0

the equation is also fulfilled

The zeros of the quadratic function x^2-8x=0 are 0 and 8.

3 0
3 years ago
Other questions:
  • At tire Depot a green pair of new tire sells for $216 the managers special advertises the same tire selling at a rate of $380 fo
    7·1 answer
  • Three support beams form a pair of complementary angles (x+3 (2x-3). Find the measure of each angle.
    15·1 answer
  • Solve the following compound inequality.<br><br> 5x+7&lt;=-3 or 3x-4&gt;=11
    6·1 answer
  • | If f(x) = (3x – 1, find f(2) and f(-2)
    7·1 answer
  • In 12 ½ minutes, Dulce read 50 pages.
    10·1 answer
  • What is the inverse of y= 10^x +8?
    11·1 answer
  • Launch Problem 1
    12·2 answers
  • 100 points plz help<br> J qnswer this question
    6·2 answers
  • Describe how to round set to the best<br> HELP PLEASE QUICKLY
    14·1 answer
  • Write the equation of the line in fully simplified slope-intercept form.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!