Answer with Explanation:
We are given that


Differentiate x and y w.r.t t





Substitute t=1


Magnitude of velocity=

Hence, the magnitude of the missile's velocity=16.49 m/s


Substitute t=1



Hence, the magnitude of acceleration when t=1 s=
The proton would be 2 and d a part of 1 then calculate that hope this helped
Answer:
-30 N/C
Explanation:
Since the potential changes from 0.90 V to 1.2 V when I move the probe 1 cm closer to the non-grounded electrode, the electric field is the gradient between the two points is given by E = -ΔV/Δx where ΔV = change in electric potential and Δx = distance of potential change = 1 cm = 0.01 m
Now ΔV = final potential - initial potential = 1.2 V - 0.90 V = 0.30 V
Since E = -ΔV/Δx
substituting the values of the variables into the equation, we have
E = -ΔV/Δx
E = -0.30 V/0.01 m
E = -30 V/m
Since 1 V/m = 1 N/C.
E = -30 N/C
So, the average electric field is -30 N/C
Milk, apples, and beans don't have much carbohydrate. So if you
cut down on those, you don't really cut down much on carbohydrates.
If Rachel needs to reduce her intake of carbohydrates, she should
cut down on bread. (Also cake, sugar, corn, pasta, and potatoes.)
Answer:
rotates faster
Explanation:
A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball As it shrinks in size, the cloud rotates faster. Because Angular momentum is conserved, so when it shrinks the moment of inertia decreases, then angular speed must increase. So it rotates fast.