1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
3 years ago
15

Did u guys know that 75% of stair accidents happen on stairs ​

Physics
1 answer:
soldier1979 [14.2K]3 years ago
7 0

Answer:

Shouldn't it be 100%

Explanation:

Please explain in the comment section.

You might be interested in
A spherical shell contains three charged objects. The first and second objects have a charge of − 14.0 nC and 33.0 nC , respecti
matrenka [14]

Explanation:

Formula depicting relation between total flux and total charge Q is as follows.

              \phi  = \frac{Q}{\epsilon_{o}}    (Gauss's Law)

Putting the given values into the above formula as follows.

            Q = \phi \times \epsilon_{o}

                = -953 Nm^{2}/C \times 8.854 \times 10^{-12}

                = -8.4 \times 10^{-9} C

                = -8.4 nC

Therefore, when the unknown charge is q  then,

         -14.0 nC + 33.0 nC + q = -8.4 nC

               q = -27.4 nC

Thus, we can conclude that charge on the third object is -27.4 nC.

7 0
4 years ago
In lab, your instructor generates a standing wave using a thin string of length L = 1.65 m fixed at both ends. You are told that
erik [133]

Answer:

On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

\frac{\lambda}{4} = 0.275~m\\\lambda = 1.1~m

This means that the relation between the wavelength and the length of the string is

3\lambda/2 = L

By definition, this standing wave is at the third harmonic, n = 3.

Furthermore, the standing wave equation is as follows:

y(x,t) = (A\sin(kx))\sin(\omega t) = A\sin(\frac{\omega}{v}x)\sin(\omega t) = A\sin(\frac{2\pi f}{v}x)\sin(2\pi ft) = A\sin(\frac{2\pi}{\lambda}x)\sin(\frac{2\pi v}{\lambda}t) = (2.45\times 10^{-3})\sin(5.7x)\sin(59.94t)

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.

v_y(x,t) = \frac{dy(x,t)}{dt} = \omega A\sin(kx)\cos(\omega t)\\a_y(x,t) = \frac{dv(x,t)}{dt} = -\omega^2A\sin(kx)\sin(\omega t)

a_y(x,t) = -(59.94)^2(2.45\times 10^{-3})\sin((5.7)(0.138))\sin(59.94t) = 0

For this equation to be equal to zero, sin(59.94t) = 0. So,

59.94t = \pi\\t = \pi/59.94 = 0.0524~s

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:

v_y(x=0.138,t=0.0524) = (59.94)(2.45\times 10^{-3})\sin((5.7)(0.138))\cos((59.94)(0.0524)) = 0.002~m/s

4 0
3 years ago
Which three factors are used to calculate gravitational potential energy?
Elis [28]

Explanation:

PEgrav = m *• g • h

In the above equation, m represents the mass of the object, h represents the height of the object and g represents the gravitational field strength (9.8 N/kg on Earth) - sometimes referred to as the acceleration of gravity.

www.physicsclassroom.com › energy

Potential Energy - The

8 0
4 years ago
Why are the element from period 2 grouped together
valentinak56 [21]
All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons. All of the elements in the second row (the second period) have two orbitals for their electrons. As you move down the table, every row adds an orbital.
4 0
4 years ago
A box is pulled up a rough ramp that makes an angle of 22 degrees with the horizontal surface. The surface of the ramp is the x-
kifflom [539]

Magnitude of the force  of tension: 139 N

Explanation:

The surface of the ramp here is assumed to be the positive x-direction.

To solve this problem and find the magnitude of the force of tension, we have to analyze only the situation along the x-direction, since the force of tension lie in this direction.

There are three forces acting along the x-direction:

  • The force of tension, F_T, acting up along the plane
  • The force of friction, F_f=14.8 N, acting down along the plane
  • The component of the weight in the x-direction, F_{gx}, acting down along the plane

We know that the magnitude of the weight is

F_g=70.0 N

So its x-component is

F_{gx}=F_g sin \theta =(70.0)(sin 22^{\circ})=26.2 N

The net force along the x-direction can be written as

F_x = F_T-F_f-F_{gx}

And therefore, since the net force is 98 N, we can find the magnitude of the force of tension:

F_T=F_x+F_f+F_{gx}=98+14.8+26.2=139 N

Learn more about inclined planes:

brainly.com/question/5884009

#LearnwithBrainly

8 0
3 years ago
Read 2 more answers
Other questions:
  • An airplane heads northeast at an airspeed of 700 km/hr, but there is a wind blowing from the west at 60 km/hr. In what directio
    8·1 answer
  • As ocean waves approach shore, their velocity decreases. How does a decrease in velocity affect the frequency and wavelength of
    13·2 answers
  • A 0.5 m diameter wagon wheel consists of a thin rim having a mass of 7 kg and six spokes, each with a mass of 1.2 kg. 1.2 kg 7 k
    15·1 answer
  • If the same net force is applied to a 7 kg object and a 21 kg object, then the 21 kg object accelerates three times faster than
    15·1 answer
  • Two enery converrsation that take place when you warm a cup of cocoa in a microwave<br> Oven
    13·1 answer
  • Jonas and his family are moving to another part of the city. As Jonas, his brother, and his Dad were driving one of the trucks f
    12·2 answers
  • Please help me do this problem
    15·1 answer
  • What force will accelerate a 20 kg object at 4 m/s 2? *
    5·1 answer
  • A body is moving along a circular path with variable speed, it has both radial and tangential acceleration.
    14·1 answer
  • Calculate the average times it took the car to travel 0. 25 and 0. 50 meters. Record the averages, to two decimal places, in Tab
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!