Answer:
Climate is long time intervals and weather is short time intervals
Explanation:
<span>2 HCl + Ba(OH)2 = BaCl2 + 2 H2O is the answer.</span>
Answer:
T = 215.33 °C
Explanation:
The activation energy is given by the Arrhenius equation:

<u>Where:</u>
k: is the rate constant
A: is the frequency factor
Ea: is the activation energy
R: is the gas constant = 8.314 J/(K*mol)
T: is the temperature
We have for the uncatalyzed reaction:
Ea₁ = 70 kJ/mol
And for the catalyzed reaction:
Ea₂ = 42 kJ/mol
T₂ = 20 °C = 293 K
The frequency factor A is constant and the initial concentrations are the same.
Since the rate of the uncatalyzed reaction (k₁) is equal to the rate of the catalyzed reaction (k₂), we have:

(1)
By solving equation (1) for T₁ we have:
Therefore, we need to heat the solution at 215.33 °C so that the rate of the uncatalyzed reaction is equal to the rate of the catalyzed reaction.
I hope it helps you!
Answer:
The total work is 4957.45J
Explanation:
For an ideal gas, at constant temperature the definition of work (W) is

where P is the pressure, V the volume, n the moles number, T the temperature and R the gas constant.
To solve the problem is necessary to replace the two steps in the equation
Stape 1: n = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 5.50atm and Pf = 2.43atm.

Stape 2: n = 1 mol, R = 0.082atm.L/K.mol, T = 77ºC = 350K, Pi = 2.43atm and Pf = 1.00atm.

The total work is the sum of the two steps

Answer:
7mol of CO2
Explanation:
The balanced equation for the combustion of acetylene is

Using the equation coefficients, we can find out the number of moles of CO2 produced as follows.
