When we describe the energy of a particle as quantized, we mean that only certain values of energy are allowed. ... In this case, whenever we measure the particle's energy, we will find one of those values. If the particle is measured to have 4 Joules of energy, we also know how much energy the particle can gain or lose. Quantized energy means that the electrons can possess only certain discrete energy values; values between those quantized values are not permitted
<span>the pH of a 0.050 M triethylamine, is 11.70
</span>
For triehtylamine,

, the reaction will be

and we know, pH = -log[H+] and pOH = -log[OH-]
Also, pOH + pH = 14
Now, the Kb value = 5.3 x 10^-4
And
![kb = \frac{( [( C_{2}H_{5})_{3}NH^{+} ]* OH^{-} )}{[( C_{2}H_{5})_{3}N]}](https://tex.z-dn.net/?f=kb%20%3D%20%20%5Cfrac%7B%28%20%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DNH%5E%7B%2B%7D%20%5D%2A%20%20OH%5E%7B-%7D%20%29%7D%7B%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DN%5D%7D%20)
thus, [OH-] =(5.3 ^ 10-4) ^2 / 0.050
=0.00516 M
Thus, pOH = 2.30
pH = 14 - pOH = 11.7
Answer:
Molarity = 0.24 M
Explanation:
Given data:
Number of moles of Mg(NO₃)₂ = 0.181 mol
Volume of solution = 0.750 L
Molarity of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
by putting values,
Molarity = 0.181 mol / 0.750 L
Molarity = 0.24 M
2.49 x 10^46 is the answer