Answer:
C
Explanation:
That is where the most heat and light is showing on this diagram.
isotopes are the same element, but have different numbers of neutrons (but still have the same number of electrons and protons), hence have a different mass number.
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
Answer:
1585.67N
Explanation:
their are many student who can not get answer on time and step by step answer.so there are
a wats up group of experienced experts who helps you for free with step by step answer.just join this and get answer.
maximum static friction acting on the object will be

plug in all values

So here it means that if applied force is less than or equal to 58.8 N then the object will remain stationary as friction can balance the external force upto this limit of external force
So here it is given that applied force is 20 N
so here object will not move due to this force and it will remain at rest always
due to this applied force