Question:
Which of the following statements correctly describe(s) the driving forces for diffusion of Na+ and K+ ions through their respective channels? Select all that apply.
A)The diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the plasma membrane.
B)The diffusion of Na+ ions into the cell is impeded by the electrical gradient across the plasma membrane.
C)The diffusion of K+ ions out of the cell is impeded by the K+ concentration gradient across the plasma membrane.
D)The diffusion of K+ ions out of the cell is impeded by the electrical gradient across the plasma membrane. The electrochemical gradient is larger for Na+ than for K+.
Answer:
"The concentration gradient and the electro-chemical gradient" describes the driving forces for diffusion of Na+ and K+ ions through their respective channels
Explanation:
The Na ions diffusion inside the cell is facilitated by the concentration gradient of the Na ions which is present across the plasma membrane. Hence, the diffusion of the K ions which is present outside the cell and will be impeded due to the electrical gradient which is present near the plasma membrane. Thus, the electro-chemical gradient is greater as compared to the Na ion than that of the K ion.
Convection
Convection is transfer of heat through fluid (liquid or gas) caused by their molecular motion. In convection, heat current flows in a vertically upward direction. Macaroni rising and falling in a pot of boiling water is due to convection
Answer:
λ = 0.0167 m = 16.7 mm
Explanation:
The wavelength of these radio waves can be found out by using the formula for the speed of radio waves:
v = fλ
where,
v = speed of radio waves = speed of light = 3 x 10⁸ m/s
f = frequency of radio waves = 18 GHz = 18 x 10⁹ Hz
λ = Wavelength = ?
Therefore,
3 x 10⁸ m/s = (18 x 10⁹ Hz)λ
λ = (3 x 10⁸ m/s)/(18 x 10⁹ Hz)
<u>λ = 0.0167 m = 16.7 mm</u>