Answer:
a) P = 9.58 psi for h=7.2 m
b) P=4.7 psi for h=5.94 m
Explanation:
Since the pressure Pon a static liquid level h is
P= p₀ + ρ*g*h
where p₀= initial pressure , ρ=density , g = gravity
then he variation of the liquid level Δh will produce a variation of pressure of
ΔP= ρ*g*Δh → ΔP/Δh = ρ*g = ( 15 psi - 3 psi) /( 8.6 m - 5.5 m) = 12/3.1 psi/m
if the liquid level is converted linearly
P = P₁ + ΔP/Δh*(h -h₁)
therefore choosing P₁ = 3 psi and h₁= 5.5 m , for h=7.2 m
P = 3 psi + 12/3.1 psi/m *(7.2 m -5.5 m) = 9.58 psi
then P = 9.58 psi for h=7.2 m
for P=4.7 psi
4.7 psi = 3 psi + 12/3.1 psi/m *(h -5.5 m)
h = (4.7 psi - 3 psi)/ (12/3.1 psi/m) + 5.5 m = 5.94 m
then P=4.7 psi for h=5.94 m
Answer:
Follows are the solution:
Explanation:
A + B = C
Its response decreases over time as well as consumption of a reactants.
r = -kAB
during response A convert into 2x while B convert into x to form 3x of C
let's y = C
y = 3x
Still not converted sum of reaction
for A: 100 - 2x
for B: 50 - x
Shift of x over time

Integration of x as regards t
![\frac{1}{[(100 - 2x)(50 - x)]} dx = -k dt\\\\\frac{1}{2[(50 - x)(50 - x)]} dx = -k dt\\\\\ integral\ \frac{1}{2[(50 - x)^2]} dx =\ integral [-k ] \ dt\\\\\frac{-1}{[100-2x]} = -kt + D \\\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5B%28100%20-%202x%29%2850%20-%20x%29%5D%7D%20dx%20%3D%20-k%20dt%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2%5B%2850%20-%20x%29%2850%20-%20x%29%5D%7D%20dx%20%3D%20-k%20dt%5C%5C%5C%5C%5C%20integral%5C%20%20%5Cfrac%7B1%7D%7B2%5B%2850%20-%20x%29%5E2%5D%7D%20dx%20%3D%5C%20integral%20%5B-k%20%5D%20%5C%20dt%5C%5C%5C%5C%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%20%3D%20-kt%20%2B%20D%20%5C%5C%5C%5C)
D is the constant of integration
initial conditions: t = 0, x = 0
![\frac{-1}{[100-2x]} = -kt + D \\\\\frac{ -1}{[100]} = 0 + D\\\\D= \frac{-1}{100}\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%20%3D%20-kt%20%2B%20D%20%20%20%5C%5C%5C%5C%5Cfrac%7B%20-1%7D%7B%5B100%5D%7D%20%3D%200%20%2B%20D%5C%5C%5C%5CD%3D%20%5Cfrac%7B-1%7D%7B100%7D%5C%5C%5C%5C)
hence we get:
![\frac{-1}{[100-2x]}= -kt -\frac{1}{100}\\\\or \\\\ \frac{1}{(100-2x)} = kt + \frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B%5B100-2x%5D%7D%3D%20-kt%20-%5Cfrac%7B1%7D%7B100%7D%5C%5C%5C%5Cor%20%5C%5C%5C%5C%20%5Cfrac%7B1%7D%7B%28100-2x%29%7D%20%3D%20kt%20%2B%20%5Cfrac%7B1%7D%7B100%7D)
after t = 7 minutes , 

Insert the above value x into
equation
to get k.


therefore plugging in the equation the above value of k

Let y = C
, calculate C:
y = 3x

amount of C formed in 28 mins
plug t = 28

therefore amount of C formed in 28 minutes is = 3x = 144.78 grams
C: 
y= 136.5 =137
No two electrons in an atom<span> can have exactly the same </span>quantum<span> numbers. Orbital </span>quantum<span> numbers tell you what energy level the electron is in. In the Bohr</span>model<span>, this represents how high the orbit is above the nucleus; higher orbits have more energy</span>
Explanation:
A chemical change results from a chemical reaction, while a physical change is when matter changes forms but not chemical identity. Examples of chemical changes are burning, cooking, rusting, and rotting. Examples of physical changes are boiling, melting, freezing, and shredding.
To understand why cooking is a chemical change, you should first understand what is a chemical change. Basically, all changes in this world can be classified as either physical changes or chemical changes. The difference is that chemical changes bring about new substances while physical changes don’t. Take the example of baking: when you bake a cake, the most immediately observable change is that it expands. This is because the baking soda in it has undergone a chemical change under heat to release carbon dioxide. Notice there is no carbon dioxide in the cake before we bake it. That is what I mean by bringing about new substances.
So why is cooking a chemical change? Because almost all cooking methods involving the rise of temperature (which is basically to say, all cooking methods) involve chemical changes. Once under heat, the antioxidants omnipresent in vegetables will get oxidized and the proteins in meats will get denatured. Among other things, the former process will mostly result in the change of color of the vegetables, and the latter the stiffening of the meats
Answer:
3 × 10¯¹⁰
Explanation:
9×10² ÷ 3×10¹²
The above expression can be evaluated as follow:
9×10² ÷ 3×10¹²
Recall:
3² = 9
3¹ = 3
Therefore,
9×10² ÷ 3×10¹² = 3²×10² ÷ 3¹×10¹²
Recall:
y^m ÷ y^n = y^(m – n)
Therefore,
3²×10² ÷ 3×10¹² = 3²¯¹ × 10²¯¹²
= 3¹ × 10¯¹⁰
Recall:
y¹ = y
Therefore,
3¹ × 10¯¹⁰ = 3 × 10¯¹⁰
Therefore,
9×10² ÷ 3×10¹² = 3 × 10¯¹⁰